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Abstract. Register automata are an expressive model of computation
using finite memory. Conformance checking of their properties can be
reduced to NonEmptiness tests, however, this problem is PSPACE-
complete. Existing approaches usually employ symbolic state exploration.
This results in state explosion for most complex register automata. We
propose a semantics-preserving transformation of register automata into a
representation in which reachability of states is equivalent to reachability
of locations, i.e., is in NL. We evaluate the algorithm on random-generated
and real-world automata and show that it avoids state explosion and
performs better on most instances than a comparable existing approach.
This yields a practical approach to conformance checking of register
automata.
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1 Introduction

Register automata (RAs) were introduced by Kaminski and Frances [24] to
model languages over infinite alphabets by combining finite-state automata with
a finite set of registers that can hold data from the inputs. For example, a
register automaton can recognize the language of strings beginning and ending
with the same letter from an infinite alphabet by storing the initial symbol in
a register and comparing every subsequent input symbol to the register. RAs
can be used to model many types of real-world systems. As a result, performing
model checking on register automata is a relevant problem. Commonly, model
checking is performed via conformance checking: a property is modeled as second
RA that accepts if the property is satisfied. Then, the product of both automata
⋆ This version of the contribution has been accepted for publication, after peer review

(when applicable) but is not the Version of Record and does not reflect post-acceptance
improvements, or any corrections. The Version of Record is available online at:
https://doi.org/10.1007/978-3-031-09827-7_2. Use of this Accepted Version is subject
to the publisher’s Accepted Manuscript terms of use https://www.springernature.
com/gp/open-research/policies/accepted-manuscript-terms

https://doi.org/10.1007/978-3-031-09827-7_2
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms


2 S. Dierl and F. Howar

q1 q2 q3
register(pu, pp) | ⊤

xu := pu; xp := pp

login(pu, pp) | (xu = pu) ∧ (xp = pp)

–

logout() | ⊤

–

pw(pp) | ⊤

xp := pp

delete() | ⊤

–

(a) Model: registration and login

q0 q1

register(p0, p1) | ⊤

–

logout() | ⊤

–

pw(p0) | ⊤

–

delete() | ⊤

–

login(p0, p1) | ⊤

–

register(p0, p1) | ⊤

–

logout() | ⊤

–

pw(p0) | ⊤

–

delete() | ⊤

–

login(p0, p1) | ⊤

–

(b) Conformance: at least one successful login

Fig. 1. A RA (a) modeling XMPP [35] account management for a single user [9, Fig. 1]
and a RA (b) specifying that at least one login can be performed.

is constructed and tested for NonEmptiness. If it is non-empty, the property is
satisfied for at least one input in the original automaton. This is equivalent to
running the automaton under test and the specification automaton in parallel
and checking if both simultaneously accept.

As an example, Fig. 1(a) shows an RA recognizing the single-user account man-
agement fragment of the extensible messaging and presence protocol (XMPP) [35].
In q1, no account is registered, in q2, an account exists, but the user is not logged
in, while in q3, the user is. The user’s name and password are stored in registers
xu and xp, respectively. Figure 1(b) specifies that at least one login must be
successful by recognizing inputs that contain at least one login() symbol. The lan-
guage accepted by the product automaton of (a) and (b) is therefore non-empty
if the XMPP fragment accepts logins.

However, NonEmptiness (and the more general Reach) are PSPACE-com-
plete for most types of RA (see [16] for a more detailed overview). Two approaches
to perform NonEmptiness testing are described in the literature. Sakamoto
and Ikeda [36] describe a transformation to equivalent finite-state automata that
results in exponential blow-up, while other approaches such as D’Antoni et al.’s
configuration LRS [14] for symbolic register automata and Boigelot’s symbolic
state-space exploration [5] perform symbolic forward search from the initial states,
which also creates locations exponential in the number of registers.

To improve upon this, we propose a novel approach that transforms a RA
into an equivalent history independent RA. In these, it is guaranteed that in
every reachable state, a matching input for every subsequent transition exists.
Therefore, we can reduce Reach for the automaton’s execution states to Reach
on the transition graph, which is only an NL-complete problem. We achieve this
by back-propagating constraints imposed by a subsequent guard and splitting
locations when necessary. Instead of tracking every possible register state, this
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approach only considers properties that are enforced by subsequent guards,
greatly reducing the number of symbolic states for many automata. We verify
this on both real-world and synthetic automata. Our implementation is publicly
available on GitHub.3

Related Work. Similar to our approach, Garhewal et al. [18] track location
constraints in their SL* learning algorithm for register automata. They use
forward propagation, and discard constraints that do not discriminate accepted
suffixes to avoid exponential blow-up. Iosif and Xu [23] also applied incremental
refinenemt in a forwards-propagation algorithm for alternating data automata.

Cassel et al. developed RALib [8], another RA library for the JVM. Since
we use slightly different RA semantics, we decided to implement our own RA
library. Chen et al. [11] also explore emptiness tests for extended theories; similar
approaches are used by [7] and [13].

Constraint solving via SMT solvers on Open pNets was used in [25] to perform
dead-transition removal to enable bisimulation checking and in [33] for single-step
satisfiability testing by encoding the complete system as a SMT problem.

Moerman and Sammartino studied residuality [27] in nominal automata [6],
a property similar to our history independence property.

2 Preliminaries

This section introduces the subset of first-order logic used by register automata
and our proposed algorithm, as well as data words and register automata them-
selves.

2.1 Logical Operations

First, we define the subset of logical formulae relevant to our problem and
operations on them.

Definition 1 (Conjunction of Comparisons, Valuation). Given a set V of
variables, the logic of conjunctions (of comparisons) over V CC[V ] is a subset of
first-order logic formulae with variables V . It is defined by

C[V ] ::= (v1 ◦ v2) for ◦ ∈ {=, ̸=}, v1, v2 ∈ V

CC[V ] ::= ⊤ | ⊥ | C[V ] (∧ C[V ])⋆,

where ⊤ is universally true and ⊥ is unsatisfiable. We refer to elements of C[V ]
as clauses and v1, v2 as variables. The set of free variables is empty if f = ⊤ or
f = ⊥ and otherwise is the set of variables present in one or more clauses.

For a given domain D, a valuation ϕ : V → D satisfies a conjunction
f ∈ CC[V ] if and only if f = ⊤ or f = ∧c∈Cc and for all (vi ◦ vj) ∈ C,
ϕ(vi) ◦ ϕ(vj). We then write ϕ |= f .
3 https://github.com/tudo-aqua/koral

https://github.com/tudo-aqua/koral
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Two conjunctions f, g are equivalent (f ≡ g) if the set of satisfying valuations
is identical for both.

Our proposed algorithm will make use of two operations on these conjunc-
tions. Given a conjunction of comparisons, a constraint projection generates the
strongest statement about a subset of its variables implied by the conjunction.
Limiting logical operators to ∧ permits all CC[X] formulae to be represented as
a matrix and the following algorithms to be implemented efficiently.

Definition 2 (Constraint Projection). Let f ∈ CC[V ] and let W ⊆ V . The
(constraint) projection ΠW (f) is a logical formula such that

– f =⇒ ΠW (f),
– all free variables in ΠW (f) are ∈ W , and
– ∀g with free variables ∈ W and f =⇒ g, ΠW (f) =⇒ g.

For example, Π{x,z}(x = y) ∧ (y = z) is (x = z), since it is implied by the
statements in the original formula. ΠW (⊥) = ⊥ for all W , since it is the strongest
possible constraint. In a matrix representation, this operation can be implemented
by computing the transitive closure with the Floyd-Warshall algorithm [12] in
polynomial time. We next formalize renaming.

Definition 3 (Renaming). Let f ∈ CC[V ]. The renaming f [v′/v] generates a
formula in which all instances of v are replaced with v′. For vectors V, V ′ of equal
size n, we write f [V ′/V ] = f [v′1/v1, . . . , v

′
n/vn].

2.2 Register Automata

Register automata recognize a combination of a finite and an infinite alphabet.
The finite alphabet defines labels that are then combined with values from
the infinite alphabet. We now formally define these combinations and mostly
follow [9,10,16].

Definition 4 (Data Universe, Symbol, Word). A data universe is a tuple
D = (Λ,D, a) with a finite set Λ of labels, an infinite set D of (data) values,
and an arity function a : Λ → Z≥0. For a given label λ, the vector of formal
parameters is Pλ = (pλ1 , . . . , p

λ
a(λ)). A data symbol is a tuple (λ,d) with λ ∈ Λ

and a vector of data values d with |d| = a(λ). We usually write a symbol as
λ(d1, . . . , da(λ)). A data word is a sequence of data symbols.

The internal state (q, χ) of a register automaton is defined by its current
location q ∈ Q (similar to a finite-state automaton) and the register valuation
χ : X → D, i.e., RAs store data values in their registers. Register automata use
guard expressions to impose conditions on inputs and their current state. We
study guards with equality and inequality comparisons, although in the literature,
more expressive guards (e.g., using less-than comparisons) have been discussed.
While in the literature, multiple competing formalisms exist, the chosen model
subsumes most of them without necessitating expensive transformations (cf. [16]).
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Definition 5 (Register Automaton). A register automaton (RA) is a tuple
A = (D, Q,X, S0, Q

+, Γ ), defining

– a data universe D = (Λ,D, a),
– a finite set of locations Q,
– a finite set of registers X that can store data values,
– initial states S0 : Q× (X → D),
– accepting locations Q+ ⊆ Q, and
– a set Γ of transitions ⟨q, q′, λ, g, u⟩, each defining

• a source location q ∈ Q,
• a target location q′ ∈ Q,
• a label λ ∈ Λ,
• a guard g ∈ CC[X ∪ Pλ], and
• an update u : X → (X ∪ Pλ) that selects new values for the registers

visible in the target location, i.e., u(x) := v if the value of register or
parameter v is copied to x.

A transition ⟨q, q′, λ, g, u⟩ is always rendered as

λ(pλ1 , . . . , p
λ
|a(λ)|) | g

u
,

where pλ1 , . . . , p
λ
|a(λ)| are the formal parameters, g is the guard and u is a set of

parallel updates xi := v with v ∈ X ∪ Pλ. If no explicit update to a register
xi is given, the update xi := xi is implicitly assumed. Next, we will define the
execution and acceptance semantics of register automata.

Definition 6 (State Transition). For a register automaton with a transition
γ = ⟨q, q′, λ, g, u⟩ ∈ Γ , a state transition is a tuple T = ⟨s, s′, γ, λ(d1, . . . , da(λ))⟩,
defining

– a source state s = (q, χ),
– a target state s′ = (q′, χ′),
– an underlying transition γ = ⟨q, q′, λ, g, u⟩, and
– a data symbol λ(d1, . . . , da(λ)) from D,

such that g is satisfied under the valuation ν : X ∪ Pλ → D defined as

ν(v) :=

{
χ(v) if v ∈ X

di if v = pi,

and the target valuation χ′ is defined by χ′(x) = ν(u(x)).

Definition 7 (State Transition Sequence). Given a register automaton A, a
state transition sequence (STS) is a sequence of state transitions T1, . . . , Tk such
that for 1 ≤ i < k, the target state of Ti is the source state of Ti+1.

The sequence is induced by the data word formed by the data symbols of each
state transition. If the initial state of T1 is ∈ S0, the sequence is initial. If the
target state of Tk is (qk, χk) and qk ∈ Q+, the sequence is accepting.
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Definition 8 (Acceptance Behavior). A register automaton A accepts or
rejects data words from its data universe. A data word λ1(d1) . . . λk(dk) is
accepted if it induces an initial and accepting STS. A data word that is not
accepted is rejected. The language of words accepted by the automaton is L(A).

A is non-empty if and only if L(A) ̸= ∅. We call the corresponding decision
problem NonEmptiness.

Theorem 1. NonEmptiness is PSPACE-complete. [15]

3 History Independence

We now introduce history independent register automata. Intuitively, a RA is
history independent if in each state reachable from an initial state, for every
outgoing transition there exists at least one input that enables that transition.
As a result, all locations are reachable and transitions can not be “locked out” by
register contents. This greatly simplifies analysis of the RA.

Definition 9 (History Independent). A transition γ = ⟨q, q′, λ, g, u⟩ is his-
tory independent if for each initial state transition sequence ending in (q, χ),
there exists a data symbol λ(d1, . . . , da(λ)) such that there exists a state transi-
tion ⟨(q, χ), (q′, χ′), γ, λ(d1, . . . , da(λ)) for a valuation χ′. A register automaton
in which every location is history independent is also history independent.

Figure 2 shows examples of history dependent and independent automata.
Automaton (a) is not independent, since the state (q1, {x0 7→ a, x1 7→ b}) with
a ̸= b conflicts with the transition guard. In this state, no symbol that continues
the state transition sequence along the q1-q2-transition may exist. Automaton
(b) splits q1 into a terminal version qa1 and one, qb1, with a stronger guard on
the incoming edge. This automaton is independent, since in every state (q1, χ),
χ |= x0 = x1 and µ() continues the sequence. Automaton (c) is dependent since
after two iterations, x0 = x2 must hold and the µ() transition can no longer be
taken. Automaton (d) becomes independent by unrolling the transition. After
two steps, not more transitions are available.

History independence simplifies analyses on the automaton, since for every
path, a matching input must exist, and reachability in the automaton is equivalent
to reachability in its graph structure.

Theorem 2. A history independent automaton is non-empty if and only if one
of its accepting locations can be reached from one of its initial locations in the
automaton’s transition graph structure.

Proof. If the automaton is non-empty, an accepting input exists. It induces an
STS witnessing reachability in the transition graph.

If an accepting location is reachable in the transition graph, a witnessing
path γ1, . . . , γk exists such that γ1’s source location q0 has an initial state (q0, χ0)
Since the automaton is history independent, an input symbol λ(d) must exist
that induces a state transition from (q0, χ0) to (q1, χ1), where q1 is γ1’s target.
Repeat this argument inductively to arrive at (qk, χk), where qk ∈ Q+. ⊓⊔
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q0

q1

q2

λ(p0, p1) | ⊤

x0 := p0; x1 := p1

µ() | x0 = x1

–

(a) history dependent

q0

qa1 qb1

q2

λ(p0, p1) | ⊤

x0 := p0; x1 := p1

λ(p0, p1) | p0 = p1

x0 := p0; x1 := p1

µ() | x0 = x1

–

(b) history independent

q0
x0 := a;
x1 := b;
x2 := c

µ() | x0 ̸= x2

x0 := x1; x1 := x2

(c) history dependent

qa0

x0 := a;
x1 := b;
x2 := c

qb0

qc0

µ() | x0 ̸= x2

x0 := x1; x1 := x2

µ() | x0 ̸= x2

x0 := x1; x1 := x2

(d) history independent

Fig. 2. History dependent and independent RAs accepting the same languages. (a) and
(b) accept λ(d, d)µ() + λ(d, e); (c) and (d) accept µ(){0-2}.

4 Backwards-Propagation Algorithm

This section introduces our algorithm for transforming register automata into
equivalent, history-independent RAs. We begin by introducing location constraints
and well-constrained transitions, properties that form a statically verifiable,
sufficient condition for history independence. We then outline an algorithm to
transform one RA transition into a well-constrained transition. Its iterative
application yields a second algorithm that transforms an RA into an equivalent,
history independent RA. While the transformation causes an exponential increase
in size for some inputs, it is designed to limit the blow-up in most cases. We
prove both algorithms’ correctness and their worst-case complexity.

4.1 Well-Constrained Transitions

Definition 10 (Location Constraint). Given a register automaton with lo-
cation set Q, location constraints are a function CQ : Q → CC[X]. If for each
initial state (q, χ) and for each initial STS ending in (q, χ), χ |= CQ(q), then CQ

is valid in q.

The constant ⊤ function q 7→ ⊤ is a valid location constraint for every RA. We
also define a shorthand notation for transforming updates into logical constraints.
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q0 ⊤

q1 x0 = x1

λ(p0, p1) | ⊤

x0 := p0; x1 := p1

(a) ill-constrained

q0 ⊤

q1 x0 = x1

λ(p0, p1) | p1 = p2

x0 := p0; x1 := p1

(b) well-constrained

q0 ⊤

q1 x0 = x1

µ() | x1 = x2

x0 := x1; x1 := x2

(c) ill-constrained

q0 x1 = x2

q1 x0 = x1

µ() | x1 = x2

x0 := x1; x1 := x2

(d) well-constrained

Fig. 3. Not well-constrained and well-constrained transitions. Constraints are shown
next to the locations.

Definition 11 (Update Constraint). Given an update u = x1 := v1, . . . , xn :=
vn with vi ∈ X ∪ Pλ for a label λ, the update constraint of a is CU (u) =
∧x:=v∈a(x

′ = v).

We can now construct a property of location constraints and transition guards
that is sufficient for proving history independence. This enables us to statically
verify history independence instead of reasoning over all inputs.

Definition 12 (Well-Constrained Transition). Given location constraints
CQ : Q → CC[X], a transition ⟨q, q′, λ, g, u⟩ is well-constrained if

CQ(q) =⇒ ΠX(g), and
CQ(q) ∧ g ∧ CU (u) =⇒ CQ(q

′)[X ′/X].

Well-constrained transitions are essentially equivalent to Hoare triples [20] of
form {CQ(q)}γ{CQ(q

′)}. Figure 3 shows two examples of non-well-constrained
and well-constrained transitions. (a) is not well-constrained, since the guard does
not imply the destination constraint. (b) fixes this by strengthening the guard.
Note that this may change the semantics of the transition. In (c), the guard is
sufficient, but not implied by the source constraint. This is fixed in (d).

Theorem 3. Given a register automaton with location set Q and location con-
straints CQ : Q → CC[X], a well-constrained transition ⟨q, q′, λ, g, a⟩ is history
independent if CQ is valid in q.

Proof. Assume a transition γ = ⟨q, q′, λ, g, a⟩, an initial STS ending in (q, χ), and
location constraints CQ valid in q such that γ is well-constrained. g ̸≡ ⊥, since
otherwise ΠX(g) ≡ ⊥ and CQ(q) ≡ ⊥, i.e., χ could not exist. Now, we show that
a valuation ν : (X ∪ Pλ) → D exists that satisfies g and contains χ (i.e., only
the parameters could be set). Consider the formula

ℓ =
∧

x,x′∈X
◦∈{=,̸=}

{
(x ◦ x′) | χ(x) ◦ χ(x′)

}
,

which is satisfied by χ. If ν does not exist, ℓ ∧ g must be unsatisfiable. Since
g ̸≡ ⊥, the contradiction must pertain to the registers X, i.e., g =⇒ (xi = xj)
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and ℓ =⇒ (xi ≠ xj) or vice versa. Then, however, ΠX(g) contains (xi = xj)
and CQ(q) =⇒ g, so χ can not satisfy CQ(q). Therefore, a ν extending χ must
exist and can be used to select parameter values for Pλ for a state transition. ⊓⊔

Well-constrained transitions also ensure a propagation of valid location con-
straints.

Theorem 4. Given location constraints CQ : Q → CC[X] and a state transition
⟨(q, χ), (q′, χ′), γ, λ(d)⟩ with γ being a well-constrained transition, then, if χ
satisfies CQ(q), χ′ satsifies CQ(q

′).

Proof. By contradiction. Assume an initial STS ending in ⟨(q, χ), (q′, χ′), γ =
⟨q, q′, λ, g, u⟩, λ(d)⟩, and location constraints CQ such that γ is well-constrained,
χ |= CQ(q) and χ′ ̸|= CQ(q

′). Then, there must exist x1, x2 such that χ′(x1) ̸=
χ′(x2), but CQ(q

′) |= x1 = x2 (or vice versa). Now, let v1 = a(x1) and v2 = a(x2).
Since the transition is well-constrained, g =⇒ v1 ̸= v2, i.e., the transition can
not have been taken. ⊓⊔

This informs the central idea of our history-independence transformation:
if we can replace all transitions with semantically equivalent well-constrained
transitions without altering the automaton’s semantics, the resulting automaton
is history independent. We will first demonstrate how to make a transition
well-constrained using two steps: modifying the guard and updating the source
location constraint to make the transition well-constrained and splitting locations
to handle incompatible constraints. The first step is straightforward: given a
transition ⟨q, q′, λ, g, u⟩ and location constraints CQ, we can make the transition
well-constrained by refining the guard g and location constraint CQ(q) to

g′ := g ∧ΠX∪Pλ(CU (u) ∧ CQ(q
′))

CQ(q)
′ := CQ(q) ∧ΠX(g).

If two transitions ⟨q, q′1, λ1, g1, a1⟩ and ⟨q, q′2, λ2, g2, a2⟩ originate in the same
location q, no CQ(q) may exist that makes both transitions well-constrained. In
this case, we must split the location into multiple variants, each with the same
incoming transitions and loops. To preserve possible determinism, each split
would create at least four locations:

– a location q12 with CQ(q12) = ΠX(g1) ∧ΠX(g2), in which both transitions
are present and well-constrained,

– two locations q12̄ and q1̄2 with CQ(q12̄) = ΠX(g1) ∧ΠX(¬g2) and vice versa,
in which only one transition is present and well-constrained, and

– a location q1̄2̄ with CQ(q1̄2̄) = ΠX(¬g1) ∧ΠX(¬g2), in which no transition
is present.

However, the resulting constraints may not be expressible in CC[X] if they contain
∨ operators. Admitting these operators would preclude efficient implementation,
so the locations must instead be split into sub-locations for each disjunctive
clause. This will frequently result in exponential blow-up. Instead, we sacrifice
determinism and create only three locations:
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– two locations q1 and q2 with CQ(q1) = ΠX(g1) and vice versa, in which only
one transition is present and well-constrained, and

– a location q⊤ with CQ(q⊤) = ⊤, in which no transition is present.

Note that if a location is split multiple times, q⊤ does not need to be recreated.
Loop transitions pose an additional challenge, since the location constraint re-
quired to make it well-constrained may vary between loops. To preserve semantics,
a loop ⟨q, q, λ, g, u⟩ must be split into two transitions:

– ⟨ql, q, λ, g′ = ΠX∪V (CU (u) ∧ CQ(q)), u⟩ with CQ(ql) = ΠX(g′), which is
well-constrained, and

– ⟨ql, ql, λ, g, u⟩, which may not.

However, the new loop can again be split iteratively until a stable state is reached.
We will prove this intuition in the next section in Lemma 1. We formalize our
idea as Algorithm 1. Figure 4 shows two examples of the algorithm’s operation.
In (a) and (b), q′1 is created to accommodate the µ transition. The guard and the
location constraint of q′1 are strengthened so the transition is now well-constrained.
Note that the new q0-q′1 transition is not well-constrained. In (c) and (d), loop
handling is shown. The unrolled iteration (the q′1-q1 transition) is well-constrained,
the copied loop is not.

Note that the loss of determinism is significant, since deterministic RAs
are a strict subset of nondeterministic ones. E.g., the former are closed under
complement and their Universality is decidable, while nondeterministic RAs
are not closed under complement and Universality is undecidable. This does not
impact our Reach analysis, however, which will benefit from the transformation.
Next, we prove that the algorithm does not alter an RA’s semantics, conditional
on the validity of the location constraints.

Theorem 5. Let A be an RA with location constraints CQ and A∗ the RA
with location constraints C∗

Q after applying Algorithm 1 to a single transition
γ = ⟨q, q, λ, g, u⟩. A data word induces an accepting initial STS in A such that
in each state (q̄, χ̄), χ̄ |= CQ(q̄) if and only if it induces an accepting initial STS
in A∗ such that χ̄ |= C∗

Q(q̄).

Proof. State transition sequences may include three types of modified transition.
For each type, we show that an original transition can be exchanged with the
modified transition and vice versa.

Outgoing transitions For STS in A∗, they can be replaced by the original
transition with a weaker guard. For STS in A, assume a state transition
⟨(q, χ), (q′, χ′), γ, λ(d)⟩. Since χ′ |= CQ(q

′) and the original guard is satisfied,
the stronger guard created in Line 4 must also be satisfied, so the transition
can be replaced with the modified variant.

Loop transitions For STS in A∗, they can again be replaced with the original.
For STS in A, the loop may have been split. Then, all but the penultimate
loop iteration can be replaced with the loop copy made by Line 9; the last
iteration then uses the transition to the original location. If not, but the
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1 Function MakeWellConstrained(A, CQ, γ = ⟨q, q′, λ, g, u⟩) is
2 remove γ from A;
3 SplitLocation(A, CQ, q,⊤);
4 g∗ := ΠX∪V (a ∧ CQ(q

′));
5 c := ΠX(g′);
6 qc := SplitLocation(A, CQ, q, c);
7 add transition γ∗ = ⟨qc, q′, λ, g∗, u⟩ to A;
8 if q = q′ then
9 add transition ⟨qc, qc, λ, g, u⟩ to A;

10 add transition ⟨qc, q⊤, λ, g, u⟩ to A;

11 return γ∗;

12 Function SplitLocation(A, CQ, q, c) is
13 if qc already exists in A then return qc;
14 add a new location qc to A;
15 CQ(qc) := c;
16 foreach incoming transition ⟨q̂, q, λ, g, u⟩ do
17 add transition ⟨q̂, qc, λ, g, u⟩ to A;

18 foreach loop transition ⟨q, q, λ, g, u⟩ do
19 add transition ⟨q, qc, λ, g, u⟩ to A;

20 if q is accepting then mark qc as accepting;
21 if ∃ initial state (q, χ) with χ |= c then add initial state (qc, χ);
22 return qc;

Algorithm 1: Well-constrained transformation for single transitions.

transition after the loop was split, the last loop iteration can be replaced
with the copy made in Line 19.

Incoming transitions For STS in A∗, replace the transition with the original
variant. For STS in A, the replacement transition must be selected on the
following transitions. If the transition is the last, select the transition to q⊤.
If the next transition is γ, select the transition to the split-off location, if not,
to the original.

Acceptance also remains identical due to Line 20. For initial locations, the
argument is similar to outgoing transitions. If the first transition is γ, the original
guard was satisfied and χ′ |= CQ(q

′), so the initial valuation χ |= C∗
Q(qc) and qc

is initial. ⊓⊔

4.2 Iterative History Independence Transformation

To make an RA history independent, we can repeatedly apply Algorithm 1 until
all transitions are history independent. This is formalized in Algorithm 2.

We will show the algorithm’s correctness in multiple parts: first, we will
demonstrate termination, then argue that the final set of location constraints is
valid, and conclude that the resulting automaton must be history independent
and its semantics are unchanged.
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q0 ⊤

q1 ⊤

q2 x0 = x1 q3 x0 = x2

λ() | ⊤

–

µ() | ⊤

x0 := x1; x1 := x2

λ() | ⊤

–

(a) before splitting

q0 ⊤

q′1
x1 = x2 q1 ⊤

q2 x0 = x1 q3 x0 = x2

λ() | ⊤

–

λ() | ⊤

–

µ() | x1 = x2

x0 := x1; x1 := x2

λ() | ⊤

–

(b) after splitting off q′1

q0 ⊤

q1 ⊤

λ() | ⊤

–

µ() | x0 ̸= x2

x0 := x1; x1 := x2

(c) before splitting

q0 ⊤

q′1 x0 ̸= x2q1⊤

λ() | ⊤

–

λ() | ⊤

–

µ() | x0 ̸= x2

x0 := x1; x1 := x2

µ() | x0 ̸= x2

x0 := x1; x1 := x2

(d) after splitting off q′1

Fig. 4. Example results of the MakeWellConstrained function of Algorithm 1. (a) is
transformed to (b) and (c) is transformed to (d).

Lemma 1. Algorithm 2 terminates.

Proof. The algorithm’s state space is described by (Qc, ΓH), with Qc being the
constraint-specific locations and ΓH the well-constrained transitions. We first
define a lattice over the locations with their constraints. A location set Qc is
smaller than Q′

c if for every original location, the constraints of Q′
S have become

stricter:

Qc ⊑ Q′
c ⇐⇒ ∀q ∈ original Q∀qc ∈ Qc∃q′c ∈ Q′

c : c ⇐= c′.

Note that CC[X] is finite. This allows us to define the state space as a lattice,
with

(Qc, ΓH) ⊑ (Q′
c, Γ

′
H) ⇐⇒ Qc ⊑ Q′

c ∨ (Qc = Q′
c ∧ ΓH ⊆ Γ ′

H).

1 Function MakeHistoryIndependent(A) is
2 foreach location q do CQ(q) := ⊤;
3 ΓH := ∅;
4 while ∃γ /∈ ΓH do
5 γH := MakeWellConstrained(A,CQ, γ);
6 add γH to ΓH ;

7 return (A,CQ);

Algorithm 2: History Independence Transformation for RAs
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In each step, the algorithm either marks a transition as well-constrained and
leaves the automaton unchanged (Line 13), or splits a location and therefore
strengthens its constraint. Therefore, it terminates in a finite number of steps
due to the fixed point theorem of Knaster and Tarski [19, §2.1]. ⊓⊔

Lemma 2. The location constraints returned by Algorithm 2 are valid for A.

Proof. Since the algorithm terminates (Lemma 1), all transitions must be well-
constrained transitions. For each initial STS, Line 21 ensures that the initial
states satisfy their locations constraints. Inductively, by Theorem 4, if the nth
states satisfies its constraint, so will the n+ 1st. Therefore, the constraints are
valid for each reachable state. ⊓⊔

Theorem 6. Algorithm 2 computes an history independent automaton accepting
the same language as the input RA.

Proof. Since Lemma 2 guarantees that all locations constraints are valid. All
transitions are well-constrained, so by Theorem 3, they must be history indepen-
dent. Because the initial constraints (⊤) are valid for the input RA by definition,
Theorem 5 guarantees that for each data word inducing an accepting initial STS
in the original RA, an accepting initial STS in the history independent RA exists
and vice versa, i.e., the accepted languages are identical. ⊓⊔

Finally, we show that the problem of transforming an RA into an equivalent
history independent RA is FPSPACE-complete. This follows from NonEmptiness
being PSPACE-complete in general, but simple to check on an history independent
automaton.

Corollary 1. History independence is FPSPACE-complete.

Proof Sketch. We begin by showing hardness by reducing the NonEmptiness
problem on RAs. NonEmptiness for an arbitrary RA is PSPACE-complete, but
NonEmptiness of a history independent register automaton can be tested by
checking if an accepting location can be reached from an initial state’s location
in the transition graph. Since Reach on directed graphs in ∈ NL, the history
independence transformation must be at least FPSPACE-hard.

Now, we show that the transformation can be implemented using polynomial
space. The state space of Algorithm 2 is bounded by the maximal number of
transitions. For each original location, up to 3|X|2 split-off versions may exist. The
automaton size is at worst |Q| ·3|X|2 (i.e., exponential in the original automaton’s
size). However, each state can be identified using a string of polynomial length,
admitting an FPSPACE implementation. ⊓⊔

5 Evaluation

We implemented our back-propagating (BP) algorithms in Kotlin in the Ko-
ral software package and compared our performance to a symbolic forward -
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Fig. 5. Evaluation results for data structure conformance checks. For all structures, the
time required for successful forward- and back-propagation is shown, for FIFO-sets, the
transition blowup caused by back-propagation is also rendered.

propagating (FP) conformance checker based on RALib4 [8], JConstraints5 [21]
and Z36 [28].

As benchmarks, we used real-world-derived RAs provided in the Automata
Wiki7 [31] as well as random-generated register automata. For the Wiki automata,
we simulated a conformance checking (CC) scenario by using the same automata
as SUT and specification, i.e. we analyzed the self-product of each automaton.

We analyzed the performance of both our implementation and the RALib-
based analyzer in the conformance checking scenario. Additionally, we studied
our algorithm’s performance on the original Wiki automata and the random RAs.
For our algorithm, we recorded both the blowup (BU) in automaton size and
the execution time. For the FP analyzer, only timing data was available. The
experiments were executed on a Java VM with 32GiB of heap memory running
on an Intel Core i9-7960X CPU. A Docker image of the experimental setup is
available on Zenodo [17].

5.1 Automata Wiki Benchmarks

The Automaton Wiki provides three sets of data structure benchmarks. These
sets model bounded queues, stacks and FIFO-sets (stacks with a uniqueness
constraint). The bound is determined by the number of registers; the wiki provides
samples for up to 50 registers. The results of our evaluation are shown in Fig. 5.
Forwards-propagation failed to analyze all queue and FIFO-set instances and all
stacks with ≥ 25 registers. Below that, its performance is substantially worse than
that of back-propagation. Since the automata contain no guards, BP only verifies
4 https://bitbucket.org/learnlib/ralib/src/eqmc
5 https://github.com/tudo-aqua/jconstraints
6 https://github.com/Z3Prover/z3
7 https://automata.cs.ru.nl

https://bitbucket.org/learnlib/ralib/src/eqmc
https://github.com/tudo-aqua/jconstraints
https://github.com/Z3Prover/z3
https://automata.cs.ru.nl
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Table 1. Evaluation results on other real-world-derived automata. For all automata,
the size, back-propagation performance on original and self-product (conformance check
scenario) and forward-propagation performance on the product are shown.

BP Single BP CC FP CC

Automaton |Q| |Γ | Q-BU Γ -BU Time Q-BU Γ -BU Time Time

ABP [4] Output1 30 50 1.00 1.00 0.08 s 0.80 0.92 0.20 s DNF3

ABP [4] Receiver 31 6 13 3.83 2.92 0.09 s 10.83 4.26 1.64 s DNF3

ABP [4] Channel1 5 8 2.00 1.88 0.05 s 1.43 1.50 0.20 s DNF3

FWGC2 [32] 18 43 2.89 1.79 0.17 s 7.82 3.74 2293.08 s 0.84 s
Login [1] 12 20 1.25 1.15 0.04 s 2.50 2.23 0.12 s 0.55 s
Map 17 28 1.35 1.36 0.05 s 0.98 1.00 0.86 s 0.94 s
Overwriting Map 15 24 1.53 1.58 0.04 s 0.77 0.88 0.46 s 0.99 s
Passport1 [3, 22] 35 82 1.29 1.12 0.10 s 1.57 1.22 0.47 s 1.04 s
Repdigit Palindrome 6 23 4.00 1.78 0.04 s 10.33 1.92 0.18 s 0.45 s
SIP [1,2, 34] 27 65 1.00 1.00 0.04 s 1.13 0.93 0.11 s 43.42 s

1 automaton was manually transformed into our semantic 2 farmer, wolf, goat,
and cabbage puzzle 3 execution failed with an error

that every transition is well-constrained and terminates without modifying the
automaton. FIFO-sets demonstrate the limits of our analysis. These contain
complex guards and our analysis times out after two hours for ≥ 10 registers
and the analysis time increases sharply for five registers. The transition blowup
(Γ -BU, i.e., the number of generated transitions divided by the number of original
transitions) shows an immense increase in the automaton size caused by the
transformation; the state blowup (Q-BU) is proportional and therefore not shown.
The performance on non-product instances is comparable.

The results obtained for the remaining instances in the Automaton Wiki are
shown in detail in Table 1. Two families of models that require more expres-
sive semantics (randomness and arithmetic) were discarded. Some models were
transformed to match our RA semantic without changing their input languages.
While most instances were solved efficiently by both implementations, two edge
cases stand out: backwards-propagating analysis is superior for the SIP imple-
mentation, while it exhibits extremely slow behavior (MakeWellConstrained is
called 404 120 times) for the farmer, wolf, goat, and cabbage puzzle self-product
without causing substantial blowup. The latter is due to the automaton having
many registers, only two labels, and many loops, resulting in many location
combinations in the product automaton which are not reachable from the initial
states. Backwards propagation can only discover this by propagating location
constraints along all possible paths instead of working “towards” a goal.

Other points of interest are that RALib failed to load the ABP models due
to internal errors. Some models (e.g., APB Output and the map self-product)
are history independent (blowup ≤ 1). Our algorithm occasionally produced a
reduced automaton by removing dead locations or transitions from the product
automata (blowup < 1).
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Fig. 6. Back-propagation evaluation results on random RAs. Arity is ≤ 4, 10 automata
were generated per parameter set. The line follows the average results.

5.2 Random Automata

To evaluate the impact of several automaton properties, we implemented a
random RA generator as part of Koral and ran our algorithm on families of
generated automata. The generator offers three relevant tuneable parameters:
maximum arity of symbols, number of registers and number of locations and
transitions density. Preliminary analyses showed the impact of the maximum
arity to be low (a minor increase in runtime), so we fixed the maximum arity at
four. Figure 6 shows the result of the two remaining analyses: increasing number
of locations with four registers and increasing number of registers with 1000
locations. All other parameters are fixed. As expected, the runtime is linear
in the number of locations with a constant blowup of ca. 3.5. This shows that
while more propagation steps are performed, their complexity remains constant.
For the number of registers, a polynomial increase in runtime and a roughly
linear increase in blowup can be observed. Again, this is to be expected: the
back-propagation step is in O(|X|3) and more registers enable more possible
location constraints.

5.3 Threats to Validity

Since the algorithm is deterministic, all results for the automaton structure are
fully replicable. In addition, our timing results were stable for multiple repetitions
of the experiments. The performance on random automata is also stable and
exhibits low variance. We therefore conclude that the results are internally valid.

However, while the Automaton Wiki automata are representative of real-world
problems by design, only ten out of twelve families of automata could be analyzed
by our tool. The random automata, while available in arbitrary number, are not
necessarily representative of the real world. Therefore, the limited number of
real-world automata available for study may limit external validity of our results.
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6 Conclusion

Our algorithm provides a novel approach to NonEmptiness and Reach check-
ing on register automata. The RA is first transformed into an equivalent, history
independent RA. Then, Reach queries, including NonEmptiness, can be per-
formed efficiently on the result. The performance of the combined process hinges
on our backwards-propagation algorithm.

Compared to previous approaches, this algorithm provides a substantial
increase in the number of automata that can be analyzed successfully. We showed
that many real-world automata are history independent by design, and for many
more, only a small penalty is incurred by the transformation. Our analysis also
shows that there exist cases (e.g., the FIFO-set family) in which our approach,
while better that prior ones, still performs badly. We additionally found a single
case (FWGC self-product) in which our performance is substantially worse than
that of previous approaches. Our experiments on random automata demonstrate
that our algorithm can scale to very large automata. Its performance degenerates
only in the presence of specific structures, not because of size alone.

We conclude that for most “interesting” real-world automata, the analysis
speed and blowup do not reach exponential level, since their guard statements
rarely need to be traced back multiple steps through a register automaton. Our
approach is therefore suitable to analyze a larger subset of real-world register
automata than previous approaches.

Future Work. Two independent directions of extension for our work are possible:
extending the approach to more expressive languages and adapting the technique
to more natural model checking approaches.

Our work can be naturally extended to languages over ordered fields such
as Q and R with guards containing inequality operators. Recognizing languages
over non-field structures is a more challenging task, since e.g. (x < y) ∧ (y < z)
can not be statically checked for satisfiability (consider x = 1, z = 2). Corre-
sponding models were studied in, e.g., [7, 11]. Finally, an approach for register
automata with a stack [29,30] may be possible, but would require a backwards-
propagation-compatible symbolic representation of stack states. When adding
arithmetic operations to register automata, the resulting model becomes a Turing-
complete counter automaton [26]. By adapting techniques such as bounded model
checking, transformation of some of these automata into a history independent
representation would still be possible.

Defining test automata to perform model checking is cumbersome and cre-
ating product automata results in a doubling of the number of registers and a
corresponding performance penalty. We intend to explore the use of our approach
to assist in the efficient evaluation of queries in logical languages such as LTL to
offer a more natural and possibly performant approach to model checking.
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