
Learning Symbolic Timed Models
from Concrete Timed Data⋆

Simon Dierl2 , Falk Maria Howar2 , Sean Kauffman1 , Martin Kristjansen1 ,
Kim Guldstrand Larsen1, Florian Lorber1, and Malte Mauritz2

1 Aalborg Universitet, Aalborg, Denmark
2 TU Dortmund University, Dortmund, Germany

Abstract. We present a technique for learning explainable timed au-
tomata from passive observations of a black-box function, such as an
artificial intelligence system. Our method accepts a single, long, timed
word with mixed input and output actions and learns a Mealy machine
with one timer. The primary advantage of our approach is that it con-
structs a symbolic observation tree from a concrete timed word. This
symbolic tree is then transformed into a human comprehensible automa-
ton. We provide a prototype implementation and evaluate it by learning
the controllers of two systems: a brick-sorter conveyor belt trained with re-
inforcement learning and a real-world derived smart traffic light controller.
We compare different model generators using our symbolic observation
tree as their input and achieve the best results using k-tails. In our ex-
periments, we learn smaller and simpler automata than existing passive
timed learners while maintaining accuracy.

1 Introduction

In recent years, machine learning has been integrated into more and more areas
of life. However, the safety of such systems often cannot be verified due to their
complexity and unknown internal structure. For such black-box systems, model
learning can provide additional information. Model learning [14] typically deduces
an executable representation either by monitoring the System Under Learning
(SUL) (passive learning), or by prompting the SUL (active learning). Either
approach produces a model consistent with the observations. These models can
be used for verification methods like model checking, but often simply obtaining
a graphical illustration of the internal workings of the system can provide an
increase in confidence that it works as intended. The approach is especially
useful for artificial intelligence (AI) systems, where a function is constructed from
training data and no human-readable explanation might exist.
⋆ This version of the contribution has been accepted for publication, after peer review

(when applicable) but is not the Version of Record and does not reflect post-acceptance
improvements, or any corrections. The Version of Record is available online at:
https://doi.org/10.1007/978-3-031-33170-1_7. Use of this Accepted Version is subject
to the publisher’s Accepted Manuscript terms of use https://www.springernature.
com/gp/open-research/policies/accepted-manuscript-terms

https://orcid.org/0000-0001-9730-9335
https://orcid.org/0000-0002-9524-4459
https://orcid.org/0000-0001-6341-3898
https://orcid.org/0000-0002-0173-9486
https://orcid.org/0000-0003-3030-3873
https://doi.org/10.1007/978-3-031-33170-1_7
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

2 Authors Suppressed Due to Excessive Length

Single Concrete Execution:
(?red, 10), (?black, 11), . . . , (?red, 80), (!eject, 83), . . . , (?black, 298), (!pass, 301), . . .

Trace Database:

(?red, 10), (?black, 11), . . .

(?black, 11), . . .

(?red, 80), (!eject, 83), . . .

(?black, 298), (!pass, 301), . . .

. . .

. . .

Symbolic Observation Tree:

red, −, 3

black, −, 3

black, −, ⊥

timeout, eject, ∞

timeout, pass, ∞ M
M

1T
M

od
el

(c
f.

Fi
g

2)

(1)

(2) (3)

Fig. 1: Inference workflow: Find initial conditions and split into trace database
(1), compute symbolic observation tree from database (2), generate MM1T (3).

Active algorithms like Angluin’s L* [4] have shown promising results. However,
they can be difficult to apply in practice, as many systems exist that provide no
way for a learner to interact with them. An example of such a system could be
the controller of a smart traffic light, where the inputs are the arrival of cars in a
street lane. Luckily, in the modern era of big data, many systems are monitored
throughout their deployment in the real world, producing log files that can span
over months or years. Passive learning algorithms like (timed) k-tails [22,23] take
large numbers of such traces, convert them into a tree-like structure, and apply
state-merging techniques to collapse them into cyclic automata.

We propose the generation of a symbolic oracle, which can be used as a
pre-processing step to apply both active and passive learning algorithms. Figure 1
shows our proposed workflow. The first step in creating the oracle is to instantiate
a trace database from a single concrete execution trace by defining symbolic
conditions on what constitutes an initial location, i.e., where the system has
reset to its default configuration. This approach supports learning when only
a single trace is available (e.g., a long traffic log for the controller of a specific
intersection). Next, we show how to build symbolic representations of the traces.
These can be exhaustively enumerated to build a symbolic observation tree.

By constructing a trace database and symbolic observation tree from a log of
system operation, we enable both active and passive learning approaches. We
demonstrate active learning using the Mealy machine learner by Vaandager et
al. [26]. Instead of the learner interacting with the system directly, it answers
membership queries using the symbolic observation tree. For equivalence queries
we use random runs from the trace database for estimating the correctness of
the hypothesis. Since learning algorithms designed for use with a complete oracle
might ask queries that the trace database cannot answer, the inferred models
will, in general, not be minimal (distinguishing states for missing information).
We minimize the resulting Mealy Machine with a Single Timer (MM1T) via a
partial Mealy minimization algorithm that greedily merges compatible states.

Learning Symbolic Timed Models from Concrete Timed Data 3

For passive learning, we directly use the symbolic tree, that, by construction,
contains all the information in the database. It can be transformed into a final
model by existing approaches like k-tails [22,23], or via partial Mealy minimization.

Contribution. First, we show how to turn one long trace into a trace database
of short traces starting with an initial condition. We show how to identify initial
conditions along the trace, based on symbolic queries, and discuss what might
constitute an initial condition in a black-box system. Then, we present how to
derive a symbolic observation tree from these traces, which seems to carry the
right level of abstraction for human readability. Finally, we discuss and compare
several post-processing methods to retrieve human-readable automata. One of
these methods shows how active learning algorithms can be applied in a passive
setting. We demonstrate how the readability and explainability of the produced
models provide a significant advantage over previous approaches.

Case Studies. We will use a brick sorter and a smart traffic controller for an
intersection as demonstrating examples. The brick sorter is inspired by [17]. It
randomly receives either red or black blocks. These are scanned by a color sensor
and transported along a conveyor belt for three seconds. Finally, a controller will
eject red bricks, and let black bricks pass through. We use a timed automaton
controller, trained using reinforcement learning with Uppaal Stratego, as a
basis for the experiments. The inputs to the SUL are {red, black} and the outputs
are {eject, pass}. The SUL contains an intentional bug: if two blocks arrive within
three seconds, the variable storing the scanned color will be overwritten.

The traffic controller is based on the control system of a real intersection
located in the city of Vejle in Denmark. The intersection is a four way crossing
equipped with radar sensors that report the arrival of incoming cars, and can
switch between five modes for the lights. Inputs are cars arriving at the different
lanes of the streets. Outputs are the active traffic lights, e.g., a1 + a2 when the
main road on both sides has a green light. We use real-word traffic data gathered
over seven consecutive days, combined with outputs generated from a digital
twin of the intersection. The digital twin is a model created in the tool Uppaal
according to a detailed specification of the traffic light controller.

2 Preliminaries

We denote the non-negative real number at which an action occurred as its
timestamp. We refer to a finite set of actions, also known as an alphabet, as
Σ = I ∪ O where I is the set of input actions and O is the set of output actions
where I ∩ O = ∅. The special actions ⊤I and ⊤O are used in symbolic queries
and represent any input or output, respectively. The partial order ⊑ relates
actions in I ∪ {⊤I} such that any pair of inputs i1, i2 ∈ I are incomparable
when i1 ̸= i2 and ⊤I is an upper bound of I (∀i ∈ I. i ⊑ ⊤I) and the same
applies for O ∪ {⊤O}. Given a finite alphabet Σ, a timed word is a pair ρ = ⟨σ, τ⟩
where σ is a non-empty finite word over the alphabet Σ, and τ is a strictly
increasing sequence of timestamps with the same length as σ. We call the set of

4 Authors Suppressed Due to Excessive Length

all finite timed words TΣ∗. We also write a sequence of pairs of actions in Σ and
timestamps to represent a timed word: (σ0, τ0), (σ1, τ1), . . . , (σn, τn).

A constrained symbolic timed word is a pair ⟨S, φ⟩ where S is a symbolic
timed word and φ is a boolean combination of constraints on the symbolic
timestamps of S. The set of all symbolic timestamps is V. A symbolic timed
word over the finite alphabet Σ is a pair ⟨σ, v⟩ where σ is a finite word over Σ,
and v ∈ V∗ is a sequence of symbolic timestamps the same length as σ. We also
write a sequence of pairs (σ0, v0), (σ1, v1), . . . , (σn, vn) for a constrained symbolic
timed word of length n + 1. We write τi/vi to denote that vi takes the value τi.

We say that a concrete timed word models (written |=) a constrained symbolic
timed word when both sequences of actions are equal, and the constraints on
the symbolic timestamps are satisfied by the corresponding concrete timestamps.
We use a partial order to relate actions instead of strict equality so that we can
reuse the model’s definition later with ⊤I and ⊤O as possible symbolic actions.

Definition 1 (Modeling of Symbolic Word). Given a concrete timed word
ρ = ⟨σ, τ⟩ and a constrained symbolic timed word ⟨S, φ⟩ where S = ⟨σ′, v⟩, we
say that ρ |= ⟨S, φ⟩ iff for all indices i we have σi ⊑ σ′

i and τ0/v0 . . . τn/vn |= φ.

Example 1. In the brick-sorter example, suppose a constrained symbolic timed
word ⟨S, φ⟩ = ⟨(black, v0), (eject, v1), v0 + 3 ≤ v1⟩ and a timed word that models
it ρ = (black, 0), (eject, 3). We see that ρ |= ⟨S, φ⟩ since σ0 = black ⊑ S0 = black,
σ1 = eject ⊑ S1 = eject, and 0 + 3 ≤ 3.

We concatenate constrained symbolic timed words ⟨S1, φ1⟩ and ⟨S2, φ2⟩ by
concatenating the symbolic timed words S1 and S2 and conjoining the time
constraints φ1 ∧ φ2, letting ⟨S1, φ1⟩ · ⟨S2, φ2⟩ ≡ ⟨S1 · S2, φ1 ∧ φ2⟩.

Mealy Machines with One Timer.
We learn Mealy machine models with one timer. The timer can be reset to

values in N on transitions. We assume a special input timeout that triggers the
expiration of the set timer and the corresponding change of a machine’s state.
We also assume a special output “-” that indicates no output on a transition.
We first define the structure of these Mealy machines and then specify their
semantics. Our definition extends the original definition by Vaandrager et al. [26]
to model explicitly when a timer is reset or disabled and to allow a timer to
be set already in the initial state. For a partial function f : X ⇀ Y , we write
f(x) ↓ to indicate that f is defined for x and f(x) ↑ to indicate that f is not
defined for x. We fix a set of actions Σ = I ∪ O and use Ito as a shorthand for
I ∪ {timeout}.

Definition 2 (Mealy Machine with One Timer). A Mealy machine with
one timer (MM1T) is a tuple M = ⟨I, O, Q, q0, δ, λ, κ, t0⟩ with

– finite set I of inputs,
– finite set O of outputs disjoint from Ito,
– set of states Q = Qoff ∪ Qon, partitioned into states with and without a timer

(Qoff ∩ Qon = ∅), respectively, with initial state q0 ∈ Q,

Learning Symbolic Timed Models from Concrete Timed Data 5

– transition function δ : Q × Ito ⇀ Q
– output function λ : Q × Ito ⇀ O ∪ {-},
– timer reset κ : Q × Ito ⇀ {∞, ⊥} ∪ N, satisfying

• δ(q, i) ∈ Qoff ⇐⇒ κ(q, i) = ∞, where no timer is set,
• q ∈ Qoff ∧ δ(q, i) ∈ Qon ⇐⇒ κ(q, i) ∈ N, where the timer is set,
• q ∈ Qon ∧ δ(q, i) ∈ Qon ⇐⇒ κ(q, i) ∈ {⊥} ∪ N, where the timer either

continues or is set to a new value,
• δ(q, timeout) ∈ Qon ⇐⇒ q ∈ Qon, where timeouts only happen if the

timer is running, and
– initial timer t0 ∈ {∞} ∪ N s.t. t0 = ∞ if q0 ∈ Qoff and t0 ∈ N if q0 ∈ Qon.

The transition function, output function, and timer reset have identical domains,
i.e., δ(q, i)↑ iff λ(q, i)↑ iff κ(q, i)↑ for q ∈ Q and i ∈ I.

For a MM1T ⟨I, O, Q, q0, δ, λ, κ, t0⟩ we write q
i,o,t−−→ q′ for a transition from state

q to q′ for input i, output o, and new timer value t. If the given transition is
possible, we must have that δ(q, i)↓.

Example 2. Figure 2 shows the MM1T for the brick-sorter example, as learned
by our experiments, and illustrates the typical concepts of an MM1T. It shows
MM1T M = ⟨I, O, Q, q0, δ, λ, κ, t0⟩ with I = {black, red}, O = {pass, eject},
and Q = {q0, q1, q2}, where q0 ∈ Qoff and q1, q2 ∈ Qon. Additionally, we have
that δ(q0, red) = q1, λ(q0, red) = -, κ(q0, red) = 3, and t0 = ∞. We omit the
remainder of transition, output, and timer reset functions for readability.

Untimed Semantics. The untimed semantics maps an untimed run to the last
observed output on that run: The partial function M = ⟨I, O, Q, q0, δ, λ, κ, t0⟩
JMK : I+

to ⇀ O × ({∞, ⊥} ∪ N) represents the behavior of the machine at the
abstract level of how the timer is affected by the inputs. The function is defined
for an untimed word w = i0, . . . , in ∈ I∗

to if there exists a corresponding sequence
of transitions in M, i.e., let JMK(w) ↓ if transitions qj

ij ,oj ,tj−−−−→ qj+1 exist for
0 ≤ j < n, where q0 is the initial state of M. We call a sequence of such
transitions an untimed run, as there is no information on exactly when transitions
are taken. Finally, if we have that JMK(w)↓, the nth step of a sequence w can be

q0

q1q2

black,-,3

timeout,pass, ∞

red,-,⊥

black,-,⊥

red,-,3

timeout,eject, ∞

red,-,⊥black,-,⊥

Fig. 2: Learned MM1T of the brick-sorter conveyor-belt example.

6 Authors Suppressed Due to Excessive Length

found by JMK(w) = (on, tn). Input-enabledness (i.e., totality of JMK) can easily
be achieved by fixing a special undefined output, allowing us to use the active
learning algorithms for Mealy machines in LearnLib [16].

Symbolic Runs. Before defining timed semantics on concrete timed words, we
define symbolic runs as an intermediate construct that we will also use when
generating MM1Ts from concrete traces. We need one auxiliary concept that we
define inductively over the complete sequence of transitions: the current symbolic
timer value θi at every transition. This has to be defined inductively as on some
transitions a running timer is not reset. The initial timeout is θ0 = v0 + t0, for
the start of the run at symbolic time v0. Then, let

θi =
{

θi−1 for ti = ⊥ (no reset)
vi + ti otherwise (reset).

The symbolic run is constructed from an untimed run of the form

q0
i1,o1,t1−−−−−→ q1 , . . . , qn−1

in,on,tn−−−−−→ qn

The symbolic run is then represented by a constrained symbolic timed word and
constructed as follows. In every step, we define a short constrained symbolic
timed word ⟨Si, φi⟩ and concatenate these to form a constrained symbolic timed
word for the whole sequence of transitions. For transition qj−1

ij ,oj ,tj−−−−→ qj let

⟨Sj , φj⟩ =

⟨(oj , vj), vj = θj−1⟩ if ij = timeout
⟨(ij , vj), vj−1 < vj < θj−1⟩ else if oj = -
⟨(ij , vj) (oj , v′

j), vj−1 < vj = v′
j < θj−1⟩ else.

The complete symbolic run is then ⟨S1, φ1⟩ · ··· · ⟨Sn, φn⟩. Finally, every word
in w ∈ I∗

to with JMK(w) ↓ takes a unique sequence of transitions in M and
consequently has a unique symbolic run, denoted by sr(w). We extend sr(·)
to sets of words by word-wise application and write sr(M) for the the set of
symbolic runs for words in the domain of JMK.

Timed Semantics. Our definition of the concrete timed semantics of M leverages
symbolic runs. The concrete timed semantics of M then is the set traces(M) ⊆
TΣ∗ of timed words over actions Σ = I ∪ O such that

ρ ∈ traces(M) ⇔ ρ |= ⟨S, φ⟩ for some ⟨S, φ⟩ ∈ sr(M).

Example 3. For the brick sorter, an untimed run could be

q0
red,-,3−−−−→ q1

black,-,⊥,−−−−−−→ q2
timeout,pass,∞,−−−−−−−−−−→ q3

Then, assuming v0 = 0 and t0 = ∞ would lead to the symbolic run

⟨(red, v1), 0 < v1 < 0+∞⟩·⟨(black, v2), v1 < v2 < v1 +3⟩ · ⟨(pass, v3), v3 = v1 +3⟩

Learning Symbolic Timed Models from Concrete Timed Data 7

3 Trace Database

To learn an MM1T M, we must find concrete timed words produced by the
SUL that model constrained symbolic timed words in the symbolic runs of M.
However, we want to learn a model of a long-running black-box system to support
more realistic logs. As such, we assume only a single timed word from which
to learn3, and we do not assume that the word begins or ends in an initial
configuration. This makes learning more difficult since we cannot simply iterate
over the recorded words starting from the initial state. Instead, we construct a
trace database that is instantiated with a query to find initial conditions. The
sub-words that model the initial conditions mark the positions in the timed word
where the SUL has been reset to its initial state.

A symbolic query is an extension of a constrained symbolic timed word that
supports queries for unknown inputs or outputs, and that can be modeled by
timed words with stuttering actions. A stuttering action might occur in a concrete
word several times in a row, all of which may be matched by one action in a
symbolic query. We require stuttering to learn models where the initial state has
transitions leading back to itself. These self-loops are common in many controllers,
including our traffic controller case study, where an output is periodically triggered
by a timer without any new inputs. We now describe symbolic queries before
explaining how they are used to configure initial conditions.

Formally, a symbolic query is a triple ⟨S, φ, γ⟩ where S is a pair ⟨σ, v⟩, φ
is a constraint on the symbolic timestamps of S, and γ ∈ B∗ is a sequence of
Booleans the same length as σ where truth indicates that stuttering is allowed
for the action at the same index. Here, σ is a finite word over the alphabet
Σ ∪ {⊤I , ⊤O} and v is a series of symbolic timestamps the same length as σ. The
special symbols ⊤I and ⊤O represent any input or output action, respectively. We
use the convention that omitting γ when we write a symbolic query (i.e., writing
⟨S, φ⟩) means that γ is false for all actions in S.

We now define when a concrete trace models a symbolic query. The difference
between a symbolic query and a constrained symbolic timed word is that a
symbolic query may include the symbolic actions ⊤I and ⊤O and may permit
stuttering on actions. Given an action σi and a symbolic timestamp vi, the
function repeat(σi, vi) = {(σi, vi,0), . . . , (σi, vi,j),

∨
vi,j = vi | j ≥ 0} produces a

set of all constrained symbolic timed words with σi repeated finitely many times
and constraints that require one symbolic timestamp vi,j to be equal to vi.

Definition 3 (Modeling of Symbolic Query). Given a concrete timed word
ρ and a symbolic query ⟨S, φ, γ⟩ where S = ⟨σ, v⟩, ρ |= ⟨S, φ, γ⟩ when there exists
a constrained symbolic timed word u such that ρ |= u, where

u ∈
{

⟨S ′
0, φ′

0⟩ · · · · · ⟨S ′
n, φ′

n⟩ | ⟨S ′
i, φ′

i⟩ =
{

repeat(σi, vi) if γi

(σi, vi), φ otherwise

}
Initial Conditions. A trace database is a timed word instantiated with an
initial condition that serves to break it into smaller pieces and a special query to
3 Note that the approach also works with more than one word.

8 Authors Suppressed Due to Excessive Length

Table 1: Action statistics for our case studies. For the brick sorter, inputs are
detected brick colors and outputs are sorting actions. For the intersection, inputs
are lanes with detected cars and outputs are signalling configuration changes.

(a) Brick sorter

Input Freq. [%]

red 49.5
black 50.5

Output Freq. [%]

pass 49.5
reject 50.5

(b) Intersection

Input Freq. [%]

A2 41.8
A1 39.2
BLeft 8.3

Output Freq. [%]

a1 + a2 83.9
b1 + bturn 7.7

(c) Timing

Case Symbols Time Distance [s]

brick sorter inputs 11.1 ±9.8
brick sorter outputs 13.2 ±9.8
intersection inputs 6.6 ±161.7
intersection outputs 10.0 ±0.0

prepend to requests from the learner. The initial conditions are specified using
a symbolic query and each index of the word is tested against the query to see
if it satisfies the condition. If the query is satisfied, then the index is marked
as a starting index for a word in the database. Subsequently, when the learner
submits a symbolic query, it has no information about the initial conditions of
the trace database. As such, queries from the learner must be modified before
testing against the trace database: they must be augmented with any additional
actions matched by the initial condition.

Formally, a trace database is a triple D = ⟨ρ, ⟨SI , φI , γI⟩, ⟨SP , φP , γP ⟩⟩ where
ρ is a concrete timed word, ⟨SI , φI , γI⟩ is a symbolic query that defines initial
conditions, and ⟨SP , φP , γP ⟩ is a symbolic query that is prepended to trace
database queries to match the initial conditions and define the beginning of a
word. We require that ⟨SP , φP , γP ⟩ defines the symbolic timestamp v0, thereby
providing a relative timestamp from which offsets may be computed.

We can now define a function query that computes a response to a symbolic
query from an instantiated trace database. Note that more than one sub-word of
the database may match a query and, in that case, one such matching sub-word
will be chosen non-deterministically. In practice, the choice of word does not
matter since any fulfill the constraints of the query.
Definition 4. Given a trace database D = ⟨ρ, ⟨SI , φI , γI⟩, ⟨SP , φP , γP ⟩⟩ where
ρ = (σ, τ) and a symbolic query ⟨S, φ, γ⟩, we define query(D, ⟨S, φ, γ⟩) =
ρi, . . . , ρn where i ∈ {j | ∃k > j. ρj , . . . , ρk |= ⟨SI , φI , γI⟩} and ρi, . . . , ρn |=
⟨SP , φP , γP ⟩ · ⟨S, φ, γ⟩.

The initial conditions for a trace database are specific to each SUL and are a
form of prior knowledge about which the learner has no information. However, in
many cases the initial conditions can be safely assumed to be whatever happens
when the SUL is fed no inputs for a long period of time. In this case, the only
information provided by a human is how long to wait before the SUL can be
assumed to have reset. This number need not be precise, only long enough that
a reset occurs and short enough that the condition is met sufficiently often.

Example 4. Table 1 shows frequency and timing information for the most frequent
inputs and outputs of our two case studies. Table 1a shows that bricks arrived

Learning Symbolic Timed Models from Concrete Timed Data 9

and either passed or were rejected a similar number of times. Table 1c shows
that the mean times between brick-sorter inputs and outputs diverged by about
2s, but the standard deviation was the same. This tells us that the output
timing is probably closely related to the input timing. We set initial conditions
⟨SI , φI , γI⟩ = ⟨(⊤O, v0), (⊤I , v1), v0 + 10 < v1, (true, false)⟩ meaning that we
search for any output (possibly stuttering) followed by any input after 10 (∼ 9.8)
seconds. We set the word beginnings with ⟨SP , φP , γP ⟩ = ⟨(⊤O, v0), true, (true)⟩.
Table 1c shows the timing of inputs and outputs for the intersection appear largely
unrelated, with outputs occurring at a fixed interval, and Table 1b shows that
one output action dominates the others. We set initial conditions ⟨SI , φI , γI⟩ =
⟨(a1 + a2, v0), (⊤I , v1), v0 + 10 < v1, (true, false)⟩ meaning that we search for an
a1 + a2 output (possibly stuttering) followed by any input after 10 seconds. We
set the word beginnings with ⟨SP , φP , γP ⟩ = ⟨(a1 + a2, v0), true, (true)⟩.

4 From Concrete Traces to Symbolic Runs

We use symbolic queries to construct a symbolic observation tree from a trace
database. A symbolic observation tree is a tree-shaped MM1T. For a given set
of actions Σ = I ∪ O, we generate input sequences w ∈ I+

to and for these try
to infer the corresponding symbolic runs of the target MM1T from which the
trace database was recorded. The trace database provides a concrete timed word
ρ = (σ, τ) for the symbolic query ⟨S, φ, γ⟩ where we can use wildcards ⊤I and
⊤O to be matched by any input action and any output action, respectively. We
do not use action stuttering when constructing the symbolic observation tree as
this feature is needed only for specifying trace database initial conditions. As
such, we omit γ when writing symbolic queries in this section. Intuitively, we
mimic the inference process (i.e., interacting with the oracle) that is used for
constructing an observation tree in [26]. However, while Vaandrager et al. can
derive concrete timed queries for the symbolic relations and values they want to
infer, we have to find adequate traces in the database, not having full control
over timing. We leverage that, in general, a symbolic run is modeled by many
timed words, most of which can be used interchangeably. One notable difference
from an active learning setting is that the trace database may be incomplete.
In this section, we focus on showing that the generated symbolic runs may be
incomplete but will be consistent with all the information in the trace database.
The quality of inferred models will depend on the quality of data in the database.

We initialize the symbolic observation tree ⟨I, O, Q, q0, δ, λ, κ, t0⟩ with initial
state q0, i.e., initially Q = {q0}, and use a timed symbolic query ⟨(⊤O, v1), v0 < v1⟩
to observe the initial timer τ1 from timed word (o1, τ1), setting t0 = τ1. Recall
that v0 will be defined in the initial conditions of the trace database. If we cannot
find a concrete trace in the database, we assume that no timer is set initially,
setting t0 = ∞. This is consistent with the database as in this case all traces in
the database start with an input.

Now, assume the path from the root q0 of the tree leads to an unexplored
state q, along already inferred transitions q0

i1,o1,t1−−−−−→ q1 . . . qk−1
ik,ok,tk−−−−−→ qk = q

10 Authors Suppressed Due to Excessive Length

(or empty sequence of transitions in the case of the initially unexplored state q0).
Let ⟨Sq, φq⟩ denote the corresponding symbolic run. For q0, we use symbolic run
⟨ε, true⟩, where ε denotes the empty word. The currently active symbolic timer
(cf. Section 2) after the run is θq = vi + ti for the most recent set timer, i.e., such
that ti ≠ ⊥ and tj = ⊥ if i < j. If the sequence of transitions is empty or no
such τi exists, then θq = v0 + t0.

We generate a series of queries to the trace database and extend the symbolic
tree based on the responses, adding new transitions from q to newly created
states based on every input i ∈ Ito. We distinguish two basic cases: transitions
for regular inputs and transitions on timeouts.

Timeouts. For i = timeout, the symbolic tree only needs to be extended with
a new state if a timer is currently running, i.e., if ti ̸= ∞ in active timer θq. In
this case, we want to add new state r and new transition q

timeout,o,t−−−−−−−−→ r and
need to compute o and t. In the best case, both values can be computed from
symbolic query ⟨Sq, φq⟩ · ⟨(⊤O, vk+1), vk+1 = θq⟩ · ⟨(⊤O, vk+2), vk+1 < vk+2⟩.

If a corresponding concrete timed word exists in the database, then it ends
with . . . , (ok+1, τk+1), (ok+2, τk+2). The word immediately provides o = ok+1 and
t = τk+2 − τk+1 is the time observed between the two subsequent timeouts. If no
such word can be found, we can ask for the shorter ⟨Sq, φq⟩ · ⟨(⊤O, vk+1), vk+1 =
θq⟩. A corresponding concrete timed word provides o and we assume that no new
timer is set, i.e., that t = ∞. Here, we conflate the case that we do not have
complete information with the case that no new timer is set. This is consistent
with the trace database by the same argument given above: there can only be
continuations with an input as the next action in the database.

In case the trace database also does not contain a concrete word for the
second query, we do not add a new transition to the symbolic tree. Since we do
not have enough information in the database for computing the transition, we
stop exploring in this direction.

Regular Inputs. For i ̸= timeout, we want to add new state r and new
transition q,

i,o,t−−→, r and need to observe o and infer t. This case is slightly more
complex than timeouts since we have to account for the immediate output of the
transition and the fact that input transitions can either continue the existing
timer, reset it, or disable it. We start by asking symbolic query

⟨Sq, φq⟩ · ⟨(i, vk+1), vk+1 < θq⟩ · ⟨(⊤O, v′
k+1), v′

k+1 = vk+1⟩ · ⟨(⊤O, vk+2), vk+2 ̸= θq⟩

which, answered with a timed word ending in . . . , (i, τk+1), (ok+1, τ ′
k+1), (ok+2, τk+2),

provides enough information. We set o = ok+1 and t = τk+2 − τ ′
k+1. Since we

observed a timeout that cannot be explained by the currently running timer (as
vk+2 ̸= θq), we can infer that the new transition sets a timer.

If no matching timed word is found and there is a currently running timeout,
i.e., if ti ̸= ∞ in θq, we alter the query slightly to

⟨Sq, φq⟩ · ⟨(i, vk+1), vk+1 < θq⟩ · ⟨(⊤O, v′
k+1), v′

k+1 = vk+1⟩ · ⟨(⊤O, vk+2), vk+2 = θq⟩

Learning Symbolic Timed Models from Concrete Timed Data 11

and try to observe the already running timer expiring. If a corresponding timed
word is found, we set o as before and t = ⊥. This may actually be wrong: the
transition we observe could have reset the timer to a value that (accidentally)
equals the remaining time on the previously running timer. However, from the
unsuccessful first query, we know that our choice is consistent with the database.

If the second query also does not produce a timed word, we try the shorter
query ⟨Sq, φq⟩ · ⟨(i, vk+1), vk+1 < θq⟩ · ⟨(⊤O, v′

k+1), v′
k+1 = vk+1⟩. If successful,

we observe o as above and assume t = ∞, which, again, conflates missing
information and disabling the timer but is consistent with the information in the
trace database.

In case all three queries fail, we do not add a transition or new state.

q0
q1

q2
q3

t0 : 20
i1, o1, ⊥

timeout, o2, ∞
i3, o3, t3

⟨(i1, v1) (o1, v1), v0 < v1 < v0 + 20⟩ ⟨(o2, v2), v2 = v0 + 20⟩ ⟨(i3, v3) (o3, v3), v2 < v3 < v2 + ∞⟩

Fig. 3: Symbolic observation tree with symbolic run to q3.

Example 5. Figure 3 shows a fragment of a symbolic observation tree and the
corresponding symbolic run from the root q0 to inner node q3: The initial timer
is set to 20. The transition from q0 to q1 does not reset the timer, the transition
from q1 to q2 disables the timer, and the transition from q2 to q3 sets a timer to
t3. The corresponding symbolic run consists of all observed inputs and outputs
along the sequence of transitions and constrains symbolic times to obey the active
initial timer that is triggered by the second transition.

Consistency. For a trace database that could have been generated by a MM1T,
i.e., with consistent timer behavior, the symbolic observation tree is consistent
with the trace database: we only stop extending the tree when no concrete
continuations to traces exist and in every single step we ensure that the symbolic
representation is consistent with the trace database.

5 Application in Model Learning Scenarios

To evaluate the utility of our proposed symbolic abstraction in different learning
pipelines, we define five pipelines and execute them on symbolic observations gen-
erated from single logs for the brick-sorter model and the intersection controller.4

4 A note on the experiment design: since the symbolic abstraction is not learned (i.e.,
does not extrapolate beyond certain knowledge), we do not evaluate its performance
but focus on the utility in model learning. We fix adequate initial conditions for
computing the trace databases.

12 Authors Suppressed Due to Excessive Length

TTT
Learner

Random
Runs

Symbolic
Observation

Oracle

Exhaustive
Enumeration

Trace
Database

Single Concrete
Execution

Sym.
Tree

MM1T
Model

k-Tails +
Determinizer

Partial Mealy
Minimizer

Symbolic
Model

Concrete
Model

EQ
MQ

MQ

MQ

ST Q

TkT
(1)

(5)

(3)

(4)

(2)

Automata
Generation

Technical
Contribution

Fig. 4: The five evaluated learning pipelines.

We report on their quantitative performance and discuss the human-readability
of the created models.

Evaluation Setup. To identify the best learning setup, we assembled five learning
pipelines, illustrated in Fig. 4: timed k-tails (TkT) without post-processing
(1), TTT without post-processing (2), TTT with subsequent refinement (3),
symbolic tree recovery with subsequent k-tails (4), and symbolic tree recovery
with subsequent refinement (5). We use the following three approaches to generate
an initial model:

The TkT (baseline) approach performs passive learning on the trace database
without symbolic abstraction using a modified version of the TkT algorithm
[22,23]. We use a single non-resetting timer, no end events, k = 2, and a relaxed
merge criterion (states are equal if one’s k-tails are a subset of the other’s).5

The TTT approach performs active learning of a Mealy machine using the
novel symbolic abstraction oracle described in Section 4. We use the TTT [15]
algorithm provided by LearnLib [16] and approximate equivalence queries with
randomly generated runs with a fixed maximal length.

The Symbolic Tree Recovery queries the symbolic abstraction oracle exhaus-
tively to recover a symbolic tree from the inputs.

We also implemented two post-processing steps that can be used in conjunction
with the latter two learning approaches. The k-Tails approach performs an
additional passive learning step on a set of symbolic runs by applying the k-tails
passive learning algorithm [5]. Again, we use k = 2 and the relaxed merge criterion
described above and follow this with a determinization step. The Partial Mealy
Minimizer post-processing step performs greedy, partition-refinement-inspired
minimization on a partial model.

Quantitative Evaluation. We executed the pipelines described above on both
the brick-sorter and intersection logs. For the intersection, we also consider sce-
5 A problem with applying TkT to the intersection’s logs is that an unbounded number

of inputs can occur before a relevant output (i.e., cars being detected before the
signal switches). As a result, no k can be chosen that would avoid overfitting.

Learning Symbolic Timed Models from Concrete Timed Data 13

Table 2: Performance of our learning pipelines on the different scenarios.
TTT Symbolic Tree

Symb. Tree TkT No Post-pr. Part. Ref. k-Tails Part. Ref.

Scenario |I| d |ℓ| |Q| acc. [%] |Q| acc. [%] |Q| acc. [%] |Q| acc. [%] |Q|

Brick Sorter 2 7 139 7 100 3 100 3 100 3 100 3
Intersection(Ai, Bi) 4 6 581 n/a1 97 5 98 2 98 6 99 2
Intersection(Ai, BLeft) 3 6 638 n/a1 99 2 99 2 100 4 86 19
Intersection(Ai, Bi, BLeft) 5 6 970 n/a1 86 9 83 7 97 11 81 29
Intersection(Ai, Bi, ATurn) 8 6 1’351 n/a1 93 7 93 3 97 10 77 37
Intersection(complete) 11 6 1’839 749 81 13 81 13 94 23 77 50
1 TkT cannot be used: projection of concrete trace to subset of inputs not obvious.

narios with a reduced input alphabet. E.g., “Intersection(Ai, Bi)” only considers
vehicles on straight lanes. TkT does not support such scenarios since it operates
on the concrete log where it is not obvious how to project to a subset of inputs.

The results of the evaluation are shown in Table 2. For each scenario, the
table provides some information about the symbolic tree: the number of inputs
|I|, the depth d to which the symbolic tree was explored and the number of
resulting leaves |ℓ| (i.e., unique symbolic traces). For each learning pipeline, the
accuracy in the model learning step (acc. [%]), i.e., the percentage of symbolic
runs in the recovered symbolic tree that is correctly represented by the final
model, and size of the resulting automaton |Q| w.r.t. the traces contained in the
symbolic tree are shown in the order described in the last section. By design,
TkT always yields perfect accuracy, so this information is omitted.

The accuracy of the TTT-based approach degrades faster than using k-tails
for post-processing in experiments with more inputs and sparser logs. There is a
trade-off between learning extra states, distinguished from other states by missing
information and querying the trace database more extensively during equivalence
queries. As the experiments show, greedy minimization cannot effectively mitigate
missing information (either on the models inferred with TTT or on the symbolic
tree directly): obtained models are often less accurate than the original models.

Summarizing, post-processing the symbolic tree yields the best results: the
approach scales to the complete intersection and the automata are not too large,
while preserving very high accuracy.

Explainability. We also examined the human-readability of the generated models.
To judge human-readability, we rendered the learned models using GraphViz [11]
and examined them manually.

Since TkT operates on log entries, input and output actions are independent
in the automaton and timeouts have to be inferred from the timing intervals. The
resulting edge labels are non-symbolic, e.g., <pass_through,[17,32]>, indicating
that the system can be expected to let the brick pass in 17–32 time units.
Additionally, the number of generated locations is far greater than the underlying
model’s number of states, indicating that no semantic meaning can be assigned
to the states. As a result, the model (available in the repeatability package [9])
is not easily comprehensible for a human reader.

14 Authors Suppressed Due to Excessive Length

In contrast, the workflows using the symbolic tree fully recover the correct au-
tomaton shown in Figure 2. The symbolic tree generation yields MM1T transitions
that combine input, output and timing behavior (e.g., Timeout, pass_through
// timer off). One can comprehend the system’s behavior “at a glance”, e.g.,
the bug in the brick sorter’s behavior can be seen in the generated model by
following the execution path for insertion of two different-colored bricks.

These results extend to the intersection scenarios. One can see how the
intersection controller behaves by inspection of the learned model: the signals
change to accommodate arriving cars on blocked lanes. While the automata
generated, e.g., by symbolic tree recovery with k-tails refinement do increase in
size (up to 23 states) when the input alphabet is enlarged, their comprehensibility
surpasses the 749-state automaton generated by TkT.

Threats to Validity. On the conceptual level, we assume that our scenarios can
a) be correctly modeled using MM1Ts and b) initial conditions can be identified
via queries. Vaandrager et al. [26] argue that MM1Ts are applicable to many
real-life scenarios and we have anecdotally found that the quality of final learned
models is not very sensitive to the precision of initial conditions. The primary
internal threat is the parameterization of our k-tails, especially the choice of
k = 2. We selected that value based on its frequent selection in the literature
for similar use cases, e.g. in [6, 7, 10]. External validity may be threatened by
our approach overfitting the two case studies. We designed our method to be as
general as possible, and selected two dissimilar case studies to mitigate this risk.

6 Related Work

Many passive timed model learning methods construct and minimize trees. Pastore
et al. [22, 23] proposed the TkT algorithm for inference of timed automata with
multiple clocks. It normalizes traces, turns them into Timed Automata (TAs)
trees and merges locations to gain a general structure. Verwer et al. [28] proposed
the RTI algorithm for learning deterministic real-time automata. It forms an
“augmented” prefix tree with accepting/rejecting states, and merges and splits
them to compress the trees into automata. Maier et al. [19] learned TAs online
by constructing a prefix tree automaton and merging its states. Unlike RTI,
their method does not require negative examples. Recently, Coranguer et al. [8]
constructed tree-shaped automata, merged states (ignoring timing constraints)
and then used timing information to split states. They presented promising
results in comparison to TkT (in some respects) and RTI. Grinchtein et al. [12]
learned event-recording TAs. They built timed decision trees, and then folded
them into a compact automaton. Henry et al. [13] also proposed a method for
learning event-recording TAs where not all transitions must reset clocks. Dematos
et al. [20] presented a method and proof of concept for learning stochastic TAs
by identifying an equivalence relation between states and merging them.

Other formalism used in passive approaches are as follows: Narayan et al. in-
troduced a method to mine TAs using patterns expressed as Timed Regular
Expressions (TREs) [21]. The technique passively mines variable bindings from

Learning Symbolic Timed Models from Concrete Timed Data 15

system traces for TREs templates provided by a user. Verwer et al. [27] present
an algorithm for the identification of deterministic one-clock TAs. The algorithm
is efficient in the limit, i.e., it requires polyonomial time to identify the learned
model. Tappler et al. [24] used genetic algorithms for learning TAs based on
passive traces. Later, the approach was adapted to the active setting [2]. An et
al. [3] proposed two methods for actively learning TAs. In one the learner needs
to guess which transitions carry clock resets, and in the other the teacher has a
method of telling if clock-resets occur. Recently, Tappler et al. [25] proposed a
learning method for TAs that is based on SMT-solving. SMT-solving can handle
cases with partial information (as experienced in the traffic controller), and still
provide solutions satisfying the given constraints. However, the long traces we
are dealing with will likely introduce too many variables and formulas to scale.

Aichernig et al. [1] compared active and passive learning approaches in a
network protocol setting. They show that passive learning is competitive when
utilizing sparse data, a result matching our observations when comparing TTT
to passive learning-based symbolic tree post-processing.

A recent work by Vaandrager et al. defined MM1T and then used an adapter
interface to actively mine them using existing Mealy machine mining algorithms
in LearnLib [26]. This technique is used as one of the post-processing steps in
our approach, and we use an equivalent definition of MM1Ts. We complement
this approach via our symbolic observation oracle.

Jeppu et al. [18] recently introduced a method to construct automata from
long traces by extracting counterexamples from attempting to prove that no such
model exists. It found smaller models than traditional state-merging methods.

7 Conclusion

We presented a novel technique for abstracting a single concrete log of a timed
system into a MM1T. The abstraction can be used as an oracle by active learning
algorithms following the MAT framework such as TTT or to create a symbolic
tree view of the system. We evaluate four approaches for learning a model of the
system based on this abstraction in combination with different post-processing
methods on two real-world-derived use cases, a brick sorting system and a traffic
intersection signaling controller. We examined if our approach can be used to
provide explainability for complex or machine learned black-box systems. We
found that the proposed symbolic trees in combination with post-processing via
k-tails yields concise and symbolic human-readable automata.

We plan to apply our approach to more use cases to verify its performance
in more scenarios and on different automata classes (e.g., automata with data).
Moreover, we can not yet formally relate the quality of our models to the input’s
completeness and aim at finding such a relation in future work.

Acknowledgements. This work was supported by the S40S Villum Investigator
Grant (37819) from VILLUM FONDEN, the ERC Advanced Grant LASSO,
DIREC, and the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) – 495857894 (STING).

https://gepris.dfg.de/gepris/projekt/495857894

16 Authors Suppressed Due to Excessive Length

References

1. Aichernig, B.K., Muškardin, E., Pferscher, A.: Active vs. passive: A comparison
of automata learning paradigms for network protocols. Electronic Proceedings in
Theoretical Computer Science 371, 1–19 (Sep 2022). https://doi.org/10.4204/eptcs.
371.1, FMAS/ASYDE 2022

2. Aichernig, B.K., Pferscher, A., Tappler, M.: From passive to active: Learning
timed automata efficiently. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D.
(eds.) NASA Formal Methods. LNCS, vol. 12229, pp. 1–19. Springer International
Publishing (2020). https://doi.org/10.1007/978-3-030-55754-6_1, NFM 2020

3. An, J., Chen, M., Zhan, B., Zhan, N., Zhang, M.: Learning one-clock timed
automata. In: Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS’20). LNTCS, vol. 12078, pp. 444–462. Springer (2020). https:
//doi.org/10.1007/978-3-030-45190-5_25

4. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)
90052-6

5. Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state machines from
samples of their behavior. IEEE Transactions on Computers C-21(6), 592–597 (Jun
1972). https://doi.org/10.1109/TC.1972.5009015

6. Busany, N., Maoz, S., Yulazari, Y.: Size and accuracy in model inference. In: 2019
34th IEEE/ACM International Conference on Automated Software Engineering
(ASE). pp. 887–898 (Nov 2019). https://doi.org/10.1109/ASE.2019.00087, ASE
2019

7. Cohen, H., Maoz, S.: The confidence in our k-tails. In: Proceedings of the 29th
ACM/IEEE international conference on Automated software engineering. pp. 605–
610. Association for Computing Machinery, New York, NY, USA (Sep 2014).
https://doi.org/10.1145/2642937.2642944, ASE ’14

8. Cornanguer, L., Largouët, C., Rozé, L., Termier, A.: TAG: Learning timed automata
from logs. Proceedings of the AAAI Conference on Artificial Intelligence 36(4),
3949–3958 (June 2022). https://doi.org/10.1609/aaai.v36i4.20311

9. Dierl, S., Howar, F.M., Kauffman, S., Kristjansen, M., Larsen, K.G., Lorber, F.,
Mauritz, M.: Learning symbolic timed models from concrete timed data – data and
replication package (Mar 2023). https://doi.org/10.5281/zenodo.7766789

10. Gabor, U.T., Dierl, S., Spinczyk, O.: Spectrum-based fault localization in deployed
embedded systems with driver interaction models. In: Romanovsky, A., Troubitsyna,
E., Bitsch, F. (eds.) Computer Safety, Reliability, and Security. Lecture Notes in
Computer Science, vol. 11698, pp. 97–112. Springer International Publishing, Cham
(2019). https://doi.org/10.1007/978-3-030-26601-1_7, SAFECOMP 2019

11. Gansner, E.R., North, S.C.: An open graph visualization system and its applications
to software engineering. Software: Practice and Experience 30(11), 1203–1233
(2000). https://doi.org/10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.
CO;2-N

12. Grinchtein, O., Jonsson, B., Pettersson, P.: Inference of event-recording automata
using timed decision trees. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006
– Concurrency Theory. Lecture Notes in Computer Science, vol. 4137, pp. 435–
449. Springer, Berlin, Heidelberg (2006). https://doi.org/10.1007/11817949_29,
CONCUR 2006

13. Henry, L., Jéron, T., Markey, N.: Active learning of timed automata with un-
observable resets. In: Formal Modeling and Analysis of Timed Systems (FOR-

https://doi.org/10.4204/eptcs.371.1
https://doi.org/10.4204/eptcs.371.1
https://doi.org/10.4204/eptcs.371.1
https://doi.org/10.4204/eptcs.371.1
https://doi.org/10.1007/978-3-030-55754-6_1
https://doi.org/10.1007/978-3-030-55754-6_1
https://doi.org/10.1007/978-3-030-45190-5_25
https://doi.org/10.1007/978-3-030-45190-5_25
https://doi.org/10.1007/978-3-030-45190-5_25
https://doi.org/10.1007/978-3-030-45190-5_25
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1109/TC.1972.5009015
https://doi.org/10.1109/TC.1972.5009015
https://doi.org/10.1109/ASE.2019.00087
https://doi.org/10.1109/ASE.2019.00087
https://doi.org/10.1145/2642937.2642944
https://doi.org/10.1145/2642937.2642944
https://doi.org/10.1609/aaai.v36i4.20311
https://doi.org/10.1609/aaai.v36i4.20311
https://doi.org/10.5281/zenodo.7766789
https://doi.org/10.5281/zenodo.7766789
https://doi.org/10.1007/978-3-030-26601-1_7
https://doi.org/10.1007/978-3-030-26601-1_7
https://doi.org/10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N
https://doi.org/10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N
https://doi.org/10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N
https://doi.org/10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N
https://doi.org/10.1007/11817949_29
https://doi.org/10.1007/11817949_29

Learning Symbolic Timed Models from Concrete Timed Data 17

MATS’20). LNTCS, vol. 12288, pp. 144–160. Springer (2020). https://doi.org/10.
1007/978-3-030-57628-8_9

14. Howar, F., Steffen, B.: Active automata learning in practice. In: Bennaceur, A.,
Hähnle, R., Meinke, K. (eds.) Machine Learning for Dynamic Software Analysis:
Potentials and Limits, Lecture Notes in Computer Science, vol. 11026, pp. 123–
148. Springer International Publishing, Cham (2018). https://doi.org/10.1007/
978-3-319-96562-8_5

15. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: A redundancy-free
approach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.)
Runtime Verification. Lecture Notes in Computer Science, vol. 8734, pp. 307–
322. Springer International Publishing, Cham (2014). https://doi.org/10.1007/
978-3-319-11164-3_26, RV 2014

16. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib. In: Kroening, D.,
Păsăreanu, C.S. (eds.) Computer Aided Verification. Lecture Notes in Computer
Science, vol. 9206, pp. 487–495. Springer International Publishing, Cham (2015).
https://doi.org/10.1007/978-3-319-21690-4_32, CAV 2015

17. Iversen, T.K., Kristoffersen, K.J., Larsen, K.G., Laursen, M., Madsen, R.G.,
Mortensen, S.K., Pettersson, P., Thomasen, C.B.: Model-checking real-time control
programs: verifying lego mindstorms tm systems using uppaal. In: Proceedings 12th
Euromicro Conference on Real-Time Systems. Euromicro RTS 2000. pp. 147–155.
IEEE (2000)

18. Jeppu, N.Y., Melham, T., Kroening, D., O’Leary, J.: Learning concise models from
long execution traces. In: 2020 57th ACM/IEEE Design Automation Conference
(DAC). pp. 1–6 (2020). https://doi.org/10.1109/DAC18072.2020.9218613

19. Maier, A.: Online passive learning of timed automata for cyber-physical production
systems. In: IEEE International Conference on Industrial Informatics (INDIN’14).
pp. 60–66. IEEE (2014). https://doi.org/10.1109/INDIN.2014.6945484

20. de Matos Pedro, A., Crocker, P.A., de Sousa, S.M.: Learning stochastic timed
automata from sample executions. In: Leveraging Applications of Formal Meth-
ods, Verification and Validation. Technologies for Mastering Change (ISoLA’12).
LNTCS, vol. 7609, pp. 508–523. Springer (2012). https://doi.org/10.1007/
978-3-642-34026-0_38

21. Narayan, A., Cutulenco, G., Joshi, Y., Fischmeister, S.: Mining timed regular
specifications from system traces. ACM Trans. Embed. Comput. Syst. 17(2), 46:1–
46:21 (1 2018). https://doi.org/10.1145/3147660

22. Pastore, F., Micucci, D., Guzman, M., Mariani, L.: TkT: Automatic inference of
timed and extended pushdown automata. IEEE Transactions on Software Engineer-
ing 48(2), 617–636 (Feb 2022). https://doi.org/10.1109/TSE.2020.2998527

23. Pastore, F., Micucci, D., Mariani, L.: Timed k-tail: Automatic inference of timed
automata. In: 2017 IEEE International Conference on Software Testing, Verification
and Validation (ICST). pp. 401–411. IEEE, New York (Mar 2017). https://doi.org/
10.1109/ICST.2017.43, ICST 2017

24. Tappler, M., Aichernig, B.K., Larsen, K.G., Lorber, F.: Time to learn – learning
timed automata from tests. In: Formal Modeling and Analysis of Timed Systems.
pp. 216–235. Springer (2019). https://doi.org/10.1007/978-3-030-29662-9_13

25. Tappler, M., Aichernig, B.K., Lorber, F.: Timed automata learning via SMT
solving. In: NASA Formal Methods. LNCS, vol. 13260, pp. 489–507. Springer
(2022). https://doi.org/10.1007/978-3-031-06773-0_26

26. Vaandrager, F., Bloem, R., Ebrahimi, M.: Learning mealy machines with one timer.
In: Language and Automata Theory and Applications. pp. 157–170. No. 12638 in
LNCS, Springer (2021). https://doi.org/10.1007/978-3-030-68195-1_13

https://doi.org/10.1007/978-3-030-57628-8_9
https://doi.org/10.1007/978-3-030-57628-8_9
https://doi.org/10.1007/978-3-030-57628-8_9
https://doi.org/10.1007/978-3-030-57628-8_9
https://doi.org/10.1007/978-3-319-96562-8_5
https://doi.org/10.1007/978-3-319-96562-8_5
https://doi.org/10.1007/978-3-319-96562-8_5
https://doi.org/10.1007/978-3-319-96562-8_5
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1109/DAC18072.2020.9218613
https://doi.org/10.1109/DAC18072.2020.9218613
https://doi.org/10.1109/INDIN.2014.6945484
https://doi.org/10.1109/INDIN.2014.6945484
https://doi.org/10.1007/978-3-642-34026-0_38
https://doi.org/10.1007/978-3-642-34026-0_38
https://doi.org/10.1007/978-3-642-34026-0_38
https://doi.org/10.1007/978-3-642-34026-0_38
https://doi.org/10.1145/3147660
https://doi.org/10.1145/3147660
https://doi.org/10.1109/TSE.2020.2998527
https://doi.org/10.1109/TSE.2020.2998527
https://doi.org/10.1109/ICST.2017.43
https://doi.org/10.1109/ICST.2017.43
https://doi.org/10.1109/ICST.2017.43
https://doi.org/10.1109/ICST.2017.43
https://doi.org/10.1007/978-3-030-29662-9_13
https://doi.org/10.1007/978-3-030-29662-9_13
https://doi.org/10.1007/978-3-031-06773-0_26
https://doi.org/10.1007/978-3-031-06773-0_26
https://doi.org/10.1007/978-3-030-68195-1_13
https://doi.org/10.1007/978-3-030-68195-1_13

18 Authors Suppressed Due to Excessive Length

27. Verwer, S., de Weerdt, M., Witteveen, C.: One-clock deterministic timed automata
are efficiently identifiable in the limit. In: Language and Automata Theory and
Applications. LNTCS, vol. 5457, pp. 740–751. Springer (2009). https://doi.org/10.
1007/978-3-642-00982-2_63

28. Verwer, S., de Weerdt, M., Witteveen, C.: Efficiently identifying deterministic
real-time automata from labeled data. Machine Learning 86(3), 295–333 (Mar
2012). https://doi.org/10.1007/s10994-011-5265-4

https://doi.org/10.1007/978-3-642-00982-2_63
https://doi.org/10.1007/978-3-642-00982-2_63
https://doi.org/10.1007/978-3-642-00982-2_63
https://doi.org/10.1007/978-3-642-00982-2_63
https://doi.org/10.1007/s10994-011-5265-4
https://doi.org/10.1007/s10994-011-5265-4

	Learning Symbolic Timed Models from Concrete Timed Data

