
Scalable Tree-based Register Automata Learning
(Extended Version with Appendices)⋆

Simon Dierl1 , Paul Fiterau-Brostean2 , Falk Howar1 , Bengt Jonsson2 ,
Konstantinos Sagonas2,3 , and Fredrik T̊aquist2

1 Technical University of Dortmund, Dortmund, Germany
2 Uppsala University, Uppsala, Sweden

3 National Technical University of Athens, Athens, Greece

Abstract. Existing active automata learning (AAL) algorithms have
demonstrated their potential in capturing the behavior of complex systems
(e.g., in analyzing network protocol implementations). The most widely
used AAL algorithms generate finite state machine models, such as Mealy
machines. For many analysis tasks, however, it is crucial to generate richer
classes of models that also show how relations between data parameters
affect system behavior. Such models have shown potential to uncover
critical bugs, but their learning algorithms do not scale beyond small
and well curated experiments. In this paper, we present SLλ, an effective
and scalable register automata (RA) learning algorithm that significantly
reduces the number of tests required for inferring models. It achieves this
by combining a tree-based cost-efficient data structure with mechanisms
for computing short and restricted tests. We have implemented SLλ as
a new algorithm in RALib. We evaluate its performance by comparing
it against SL∗, the current state-of-the-art RA learning algorithm, in a
series of experiments, and show superior performance and substantial
asymptotic improvements in bigger systems.

Keywords: Active automata learning, Register automata

1 Introduction

Model Learning (aka Active Automata Learning (AAL) [7,39,49]) infers automata
models that represent the dynamic behavior of a software or hardware component
from tests. Models obtained through (active) learning have proven useful for
many purposes, such as analyzing security protocols [17, 18, 24, 40, 44], mining
APIs [6], supporting model-based testing [25,46, 51] and conformance testing [5].
The AAL algorithms employed in these works are efficient and supported by
various domain-specific optimizations (e.g., [30]), but they all generate finite state
machine (FSM) models, such as Mealy machines.

⋆ The version of record of this paper without appendices, first published in the pro-
ceedings of TACAS 2024, is available online at Springer’s website: https://doi.org/10.
1007/978-3-031-57249-4 5.

https://orcid.org/0000-0001-9730-9335
https://orcid.org/0000-0002-5185-0035
https://orcid.org/0000-0002-9524-4459
https://orcid.org/0000-0001-7897-601X
https://orcid.org/0000-0001-9657-0179
https://orcid.org/0000-0003-4066-9078
https://doi.org/10.1007/978-3-031-57249-4_5
https://doi.org/10.1007/978-3-031-57249-4_5

2 S. Dierl et al.

For many analysis tasks, however, it is crucial for models to also be able to
describe data flow, i.e., constraints on data parameters that are passed when
the component interacts with its environment, as well as the mutual influence
between dynamic behavior and data flow. For instance, models of protocol
components must describe how different parameter values in sequence numbers,
identifiers, etc. influence the behavior, and vice versa. Existing techniques for
extending AAL to Extended FSM (EFSM) models [1, 8, 10] take several different
approaches. Some reduce the problem to inferring FSMs by using manually
supplied abstractions on the data domain [1], which requires insight into the
control/data dependencies of a system under learning (SUL). Others extend AAL
for finite state models by allowing transitions to contain predicates over rich
data domains, but cannot generate state variables to model data dependencies
between consecutive interactions [12,34]. Finally, there exist extensions of AAL to
EFSM models with guards and state variables, such as register automata [2,3,10].
While their potential has been shown by being able to uncover critical bugs in
e.g., TCP implementations [14,15], their learning algorithms do not scale beyond
small and well curated experiments.

We follow the third line of works and address the scalability of register
automata (RA) learning algorithms in our work. The main challenge when
scaling AAL algorithms is reducing the number of tests that learners perform on
a SUL. Generally, these tests are sequences of actions of the form u · v, where u
is the prefix and v the suffix of the sequence. Tests u · v and u′ · v are then used
to determine if prefixes u and u′ can be distinguished based on the SUL’s output
triggered by v. When inferring RA models, prefixes are sequences of actions
with data values, e.g., push(1) push(2), and suffixes are sequences of actions with
symbolic parameters, e.g., pop(p1) pop(p2), that, when instantiated, can incur
a number of tests that is exponential in the length of the suffix for identifying
dependencies between prefix values and suffix parameters, e.g., different test
outcomes for (p1 = 2 ∧ p2 = 1) and (p1 = 2 ∧ p2 = 3), and for distinguishing
prefixes based on suffixes. To make register automata learning scalable, it is
crucial to reduce the use of suffixes in tests along three dimensions: (i) First, it is
important to use only few tests. (ii) Second, when using suffixes in tests, shorter
suffixes should be preferred over longer ones. (iii) Third, it is essential to restrict
tests to relevant dependencies between prefix values and suffix parameters instead
of bluntly testing all possible dependencies.

In this paper, we present the SLλ algorithm for learning register automata
which achieves scalability by optimizing the use of tests and suffixes in tests in
the three stated dimensions. SLλ uses a classification tree as a data structure,
constructs a minimal prefix-closed set of prefixes and a suffix-closed set of short
and restricted suffixes for identifying and distinguishing locations, transitions,
and registers. Technically, we adopt the idea of using a classification tree from
learners for FSMs [31,32] where it proved very successful for reducing tests. We
also adopt the technique of computing short suffixes incrementally in order to
keep them short [7, 31]. This has not been studied for RAs before and leads
to an improved worst case complexity compared to state-of-the-art approaches

Scalable Tree-based Register Automata Learning 3

(Theorem 1). Finally, we show how suffixes can be restricted to relevant data
dependencies, which is essential for achieving scalability (Section 4).

We have implemented SLλ as a new algorithm in the RALib4 tool [9]. For
comparison, we have also implemented in RALib the SLCT algorithm that
uses a classification tree but relies on suffixes from counterexamples instead of
computing short suffixes from inconsistencies. We evaluate the SLλ algorithm by
comparing its performance against the SL∗ [10] and SLCT algorithms in a series
of experiments, confirming that: (i) classification trees scale much better than
observation tables for register automata, (ii) using restricted suffixes leads to a
dramatic reduction of tests for all compared algorithms, and (iii) computing short
suffixes from inconsistencies outperforms using suffixes from counterexamples.

Related Work. For a broad overview of AAL refer to the survey paper of de la
Higuera [26] from 2005 and to a more recent paper by Howar and Steffen [27].

Learning beyond DFAs has been investigated for many models aside from
register automata. For example, algorithms have been presented for workflow Petri
nets [13], data automata [23], generic nondeterministic transition systems [50],
symbolic automata [12], one-timer automata [47], and systems of procedural
automata [21]. Learning of register automata has been performed by combining a
FSM learner with the Tomte front-end [2, 3]. A different approach using bespoke
RA learning algorithms [29,36] has been implemented in RALib. Active learning
algorithms for nominal automata, which extend FSMs to infinite alphabets and
infinite sets of states, have also been developed [37]. While the expressivity
of nominal DFAs is equivalent to that of deterministic register automata with
equality, nominal automata do not represent registers symbolically but through
permutations on infinite sets, leading to big models (e.g., for storing some data
value twice) and active learning algorithms with a high query complexity.

Applications of AAL are diverse. Active learning enables the generation of
behavioral models for software [42, 45], e.g. for network protocol implementa-
tions [40, 52], enabling security analyses and model checking [4, 19, 20]. It can
be used in testing [35,43] and to enable formal analyses [49]. Finally, it can be
combined with passive learning approaches to support life-long learning [22]. More
theoretical advances include the use of Galois connections to model SUL-oracle
mappers [33] and the introduction of apartness [48], to formalize state distinction.

Outline. We present the key ideas in tree-based learning of RA informally in the
next section, before providing formal definitions of basic concepts in Section 3.
Sections 4 to 6 present the SLλ algorithm, its properties, and the experimental
evaluation of its performance. The paper ends with few concluding remarks.

2 Main Ideas

In this section, we introduce the main ideas behind the SLλ algorithm. As
illustrating example, we will use a stack of capacity two, which stores a sequence

4 RALib is available at https://github.com/LearnLib/ralib.

https://github.com/LearnLib/ralib

4 S. Dierl et al.

l0 l1 l2

∅ {x1} {x1,x2}
push(p) | true

x1:=p

pop(p) | p=x1
−

push(p) | true
x1:=x1,x2:=p

pop(p) | p=x2
x1:=x1

Fig. 1: Register automaton accepting language of stack with capacity two.

of natural numbers. The stack supports the operations push and pop, both of
which take one natural number as a parameter. The operation push(d) succeeds
if the stack is not full, i.e., contains at most one element; the operation pop(d)
succeeds if the last pushed and not yet popped element is d. Let a symbol denote
an operation with data value, such as push(1), and let LStack denote the prefix-
closed language consisting of the words of symbols representing sequences of
successful operations. Figure 1 shows an acceptor for LStack . The initial location
l0 corresponds to an empty stack, location l1 corresponds to a stack with one
element, and l2 to a location where the stack is full. There is also an implicit
sink location for each word that is not accepted by LStack , e.g. pushing a third
element, or popping a non-top element. In each location, registers contain the
elements in the stack: for i = 0, 1, 2, location li has i registers, where the register
with the highest index contains the topmost stack element.

The task of the SLλ algorithm is to learn the acceptor in Fig. 1 in a black-box
scenario, i.e., knowing only the operations (push and pop) and the relations that
may be used in guards (here tests for equality), by asking two kinds of queries. A
membership query asks whether a word w is in L; it can be realized by a simple
test. An equivalence query asks whether a hypothesis RA accepts L; if so, the
query is answered by yes, otherwise by a counterexample, which is a word on which
the hypothesis and L disagree; in a black box setting it is typically approximated
by a conformance testing algorithm. Like other AAL algorithms, SLλ iterates a
cycle in which membership queries are used to construct a hypothesis, which is
then subject to validation by an equivalence query. If a counterexample is found,
hypothesis construction is resumed, etc., until a hypothesis agrees with L.

Classical AAL algorithms that learn DFAs maintain an expanding set of
words, Sp, called short prefixes, and an expanding set of words, called suffixes,
which induce an equivalence relation ≡ on prefixes, defined by u ≡ u′ iff uv ∈
L ⇔ u′v ∈ L for all suffixes v; this allows equivalence classes of prefixes to
represent states in a DFA. The SLλ algorithm maintains a set U of data words
called prefixes, which is the union of Sp and one-symbol extensions of elements

in Sp. Instead of suffixes, SLλ maintains a set V of symbolic suffixes, each of
which is a parameterized word, i.e., a word where data values are replaced by
parameters p1, . . . , pm. For each prefix u, say push(0), and symbolic suffix v, say
push(p1)pop(p2), membership in L of words of form uv depends on the relation
between the data values of u and the parameters p1, p2 of v, which in SLλ is
represented by a function L[u,v] with parameters x1 (representing the data value

Scalable Tree-based Register Automata Learning 5

l0

sink

∅

∅

H0

push(p) | true
−

pop(p) | true
−
push(p) | true

−
pop(p) | true

−

l0 l1 l2

∅ ∅ ∅
H1

push(p) | true
−

push(p) | true
−

l0 l1 l2
H2

∅ {x1} ∅
push(p) | true

x1:=p

pop(p) | p=x1
−

push(p) | true
−

Fig. 3: Three hypotheses constructed by SLλ: H0 (left), H1 and H2 (right).

of u), p1, and p2. In this case L[u,v](x1, p1, p2) is + iff p2 = p1 and − otherwise.
In SLλ, such functions are represented as decision trees of a specific form.

true

p2 = p1

p2 ̸= p1

Fig. 2: Decision tree for
L[u,v](x1, p1, p2).

Figure 2 shows the decision tree for the just described
function. Note that it checks constraints for parameters
one at a time: first the constraint on only p1 (which is
true), and thereafter the constraint on p2 (a compar-
ison with p1). Two prefixes u, u′ are then equivalent
w.r.t. V if L[u,v] and L[u′,v] are “isomorphic modulo
renaming” for all v ∈ V (details in Section 4).

Functions of form L[u,v] are generated by so-called tree queries, which perform
membership queries for relevant combinations of relations between data values
in u and parameters in v, and summarize the results in a canonical way. The
tree query above requires five membership queries. SLλ employs techniques for
reducing this number by restricting the symbolic suffix; see end of this section.

Initially, Sp and V contain only the empty sequence ϵ. Since ϵ is a short prefix,
one-symbol extensions, push(0) and pop(0), are entered into U . Tree queries are
performed for the prefixes in U and the empty suffix, revealing that push(0) is
accepted and pop(0) is rejected. Thus, push(0) cannot be distinguished from ϵ,
but pop(0) can, so it must lead to a new location, hereafter referred to as the
sink, which is therefore added to Sp. One-symbol extensions of pop(0), in this
case pop(0)push(1) and pop(0)pop(1), are added to U and tree queries for them
and the empty suffix are performed, revealing that they cannot be separated
from the sink. At this point, we can formulate hypothesis H0 in Fig. 3(left) from
Sp, U, and the computed decision trees.

This hypothesis is then subject to validation. Assume that it finds the coun-
terexample push(0)push(1)push(2), which is accepted byH0 but rejected by LStack .
Analysis of this counterexample reveals that ϵ and push(0) are inequivalent, since
they are separated by the suffix push(p1)push(p2) (since the concatenation of
ϵ and push(p1)push(p2) is accepted for all p1, p2 but push(0) · push(1)push(2) is
always rejected for all p1, p2). It could seem natural to add push(p1)push(p2) to V ,
but SLλ will not do that, since it follows the principle (from Lλ [28]) that a
new prefix in Sp must extend an existing prefix by one symbol, and that a new
suffix in V must prepend one symbol to an existing one. This principle keeps Sp

prefix-closed and V suffix-closed, and aims to avoid inclusion of unnecessarily

6 S. Dierl et al.

long sequences. Therefore, instead of adding push(p1)push(p2) as a suffix, SLλ

enters the prefix push(0) into Sp, and adds one-symbol extensions of push(0), in
this case push(0)push(1) and push(0)pop(1), to U . It notes that push(0)push(1)
is inequivalent to both ϵ and push(0), separated by the suffix push(p1). Again,
push(0)push(1) is therefore promoted to a short prefix, and its one-symbol ex-
tensions, push(0)push(1)push(2) and push(0)push(1)pop(2), are entered into U .
Now, SLλ is able to add suffixes to V that separate all prefixes in Sp, by two
operations that achieve consistency.

1. The push-extensions of ϵ and push(0)push(1), (i.e., push(0) and push(0)push(1)-
push(2)) are separated by the empty suffix, hence these two prefixes are
separated by the suffix push(p1), a one-symbol extension of ϵ which is added
to V.

2. The push-extensions of ϵ and push(0) (i.e., push(0) and push(0)push(1)) are
separated by the suffix push(p1), hence ϵ and push(0) are separated by
push(p1)push(p2), formed by prepending a symbol to the just added suffix
push(p1), which is added to V.

After adding the suffixes, the closedness and consistency criteria are met, pro-
ducing hypothesis H1 in Fig. 3(right, top). Assume that the validation of H1

finds counterexample push(0)pop(0), which is in LStack , but rejected by H1.
This counterexample reveals that after push(0), the two continuations pop(0)
and pop(1) lead to inequivalent locations (separated by suffix ϵ), suggesting
to refine the pop(p)-transition after push(0). To this end, V is extended by a
suffix formed by prepending pop(p) to the empty suffix, and a tree query is
invoked for L[push(0), pop(p1)], which is + iff p1 = x1 and − otherwise. Since
L[push(0), pop(p1)] makes a test for x1, which represents the data value of push(0),
we infer that the data parameter of the push(0)-prefix must be remembered in
a register, and that the pop(p)-transition must be split into two with guards
(x1 ̸= p) and (x1 = p). The resulting hypothesis, H2, is shown in Fig. 3(right, bot-
tom), which is subject to another round of validation; the subsequent hypothesis
construction reveals the pop-transitions from l2 in Fig. 1.

In SLλ, the sets U and V are maintained in a classification tree CT , a data
structure that is specially designed to represent how the suffixes in V partition U
into equivalence classes corresponding to locations. This permits an optimization
that can elide superfluous membership queries. A classification tree is a decision
tree. Each leaf is labeled by a subset of U . Each inner node is labeled by a
symbolic suffix v and induces a subtree for each equivalence class w.r.t. v, whose
leaves contain prefixes in this equivalence class. For example, in Fig. 4, which
shows a CT corresponding to hypothesis H1, the nodes are labeled by the suffixes
ϵ, push(p1) and push(p1)push(p2), which separate the leaves into four equivalence
classes corresponding to the four locations in Fig. 1. Each edge is labeled by the
results of the tree queries for a prefix in its equivalence class and the symbolic
suffix of the source node.

Each tree query requires a number of membership queries which may grow
exponentially with the length of the suffix. SLλ reduces this number by restricting
the involved symbolic suffix to induce fewer membership queries, as long as the

Scalable Tree-based Register Automata Learning 7

ϵ

push(p1)

push(p1) push(p2)

pop(0)

pop(0)push(1)
pop(0)pop(1)
push(0)pop(1)
push(0)push(1)pop(2)

ϵpush(0)

push(0)push(1)

true

true true

true

true true

Fig. 4: Classification tree for hypothesisH1 in Fig. 3. Short prefixes are underlined.

tree query can still make the separation between prefixes or transitions for which
it was invoked. To illustrate, recall that the analysis of the counterexample
push(0)push(1)push(2) for H0 shows that ϵ and push(0) are inequivalent. To
separate these, we need not näıvely use the symbolic suffix push(p1)push(p2); but
we can restrict it by considering only values of p1 and p2 that are fresh, i.e.,
different from all other preceding parameters in the prefix and suffix. With this
restriction, the suffix can still separate ϵ and push(0), and the tree query for
prefix push(0) requires only one membership query instead of five.

3 Data Languages and Register Automata

In this section, we review background concepts on data languages and register
automata. Our definitions are parameterized on a theory, which is a pair ⟨D,R⟩
where D is a (typically infinite) domain of data values, and R is a set of relations
(of arbitrary arity) on D. Examples of theories include: (i) ⟨N, {=}⟩, the theory of
natural numbers with equality, and (ii) ⟨R, {<}⟩, the theory of real numbers with
inequality; this theory also allows to express equality between elements. Theories
can be extended with constants (allowing, e.g., theories of sums with constants).

Data Languages. We assume a set Σ of actions, each with an arity that
determines how many parameters it takes from the domain D. For simplicity, we
assume that all actions have arity 1; our techniques can be extended to handle
actions with arbitrary arities. A data symbol is a term of form α(d), where α is an
action and d ∈ D is a data value. A data word (or simply word) is a finite sequence
of data symbols. The concatenation of two words u and v is denoted uv, often we
then refer to u as a prefix and v as a suffix. Two words w = α1(d1) . . . αn(dn) and
w′ = α1(d

′
1) . . . αn(d

′
n) with the same sequences of actions areR-indistinguishable,

denoted w ≈R w′, if R(di1 , . . . , dij) ⇔ R(d′i1 , . . . , d
′
ij
) whenever R is a j-ary

relation in R and i1, · · · , ij are indices among 1 . . . n. A data language L is a set
of data words that respects R in the sense that w ≈R w′ implies w ∈ L ⇔ w′ ∈ L.
We often represent data languages as mappings from the set of words to {+,−},
where + stands for accept and − for reject.

Register Automata. We assume a set of registers x1, x2, . . ., and a set of formal
parameters p, p1, p2, A parameterized symbol is a term of form α(p), where α is

8 S. Dierl et al.

an action and p a formal parameter. A constraint is a conjunction of negated and
unnegated relations (from R) over registers and parameters. An assignment is a
parallel update of registers with values from registers or the formal parameter p.
We represent it as a mapping π from {xi1 , . . . , xim} to {xj1 , . . . , xjn} ∪ {p},
meaning that the value π(xik) is assigned to xik , for k = 1, . . . ,m. In multiple-
assignment notation, this would be written xi1 , . . . , xim := π(xi1), . . . , π(xim).

Definition 1. A register automaton (RA) is a tuple A = (L, l0,X , Γ, λ), where

– L is a finite set of locations, with l0 ∈ L as the initial location,
– X maps each location l ∈ L to a finite set X (l) of registers,
– Γ is a finite set of transitions, each of form ⟨l, α(p), g, π, l′⟩, where

• l ∈ L is a source location and l′ ∈ L is a target location,
• α(p) is a parameterized symbol,
• g, the guard, is a constraint over p and X (l), and
• π (the assignment) is a mapping from X (l′) to X (l) ∪ {p}, and

– λ maps each l ∈ L to {+,−}, where + denotes accept and − reject.

A state of a RA A = (L, l0,X , Γ, λ) is a pair ⟨l, µ⟩ where l ∈ L and µ is
a valuation over X (l), i.e., a mapping from X (l) to D. A step of A, denoted

⟨l, µ⟩ α(d)−−−→ ⟨l′, µ′⟩, transfers the state of A from ⟨l, µ⟩ to ⟨l′, µ′⟩ on input of
the data symbol α(d) if there is a transition ⟨l, α(p), g, π, l′⟩ ∈ Γ such that
(i) µ |= g[d/p], i.e., d satisfies the guard g under the valuation µ, and (ii) µ′ is
defined by µ′(xi) = µ(xj) if π(xi) = xj , otherwise µ′(xi) = d if π(xi) = p. A run
of A over a data word w = α(d1) . . . α(dn) is a sequence of steps of A

⟨l0, µ0⟩
α1(d1)−−−−→ ⟨l1, µ1⟩ . . . ⟨ln−1, µn−1⟩

αn(dn)−−−−→ ⟨ln, µn⟩

for some initial valuation µ0. The run is accepting if λ(ln) = + and rejecting if
λ(ln) = −. The word w is accepted (rejected) by A under µ0 if A has an accepting
(rejecting) run over w from ⟨l0, µ0⟩. Define the language L(A) of A as the set of
words accepted by A. A language is regular if it is the language of some RA.

We require a RA to be determinate, meaning that there is no data word
over which it has both accepting and rejecting runs. A determinate RA can be
easily transformed into a deterministic one by strengthening its guards, and a
deterministic RA is by definition also determinate. Our construction of RAs in
Section 4 will generate determinate RAs which are not necessarily deterministic.
RAs have been extended to Register Mealy Machines (RMM) in several works
and it has been established how RA learning algorithms can be used to infer
models of systems with inputs and outputs [9], which we do, too.

4 The SLλ Learning Algorithm

In this section, we present the main building blocks of SLλ before an overview of
the main algorithm, followed by techniques for reducing the cost of tree queries
(page 13) and for analyzing counterexamples (page 14).

Scalable Tree-based Register Automata Learning 9

Symbolic Decision Trees. The functions, of form L[u,v], that result from tree
queries, should represent how the language L to be learned processes instantiations
of v after the prefix u. Since SLλ is intended to construct canonical RAs, it is
natural to let these functions have the form of a tree-shaped “mini-RA”, which
we formalize as symbolic decision trees of a certain form.

For a word u = α1(d1) . . . αk(dk) and a symbolic suffix v = α′
1(p1) . . . α

′
m(pm)

a (u,v)-path τ is a sequence g1, . . . , gm, where each gi is a constraint over
x1, . . . , xk and p1, . . . , pi. Define the condition represented by τ , denoted Gτ , as
g1 ∧ · · · ∧ gm. A (u,v)-tree T is a mapping from a set Dom(T) of (u,v)-paths
to {+,−}. Write d for d1, . . . , dk, d′ for d′1, . . . , d

′
m, x for x1, . . . , xk and p for

p1, . . . , pm. A (u,v)-tree T can be seen a function with parameters x, p to {+,−},
defined by T (x, p) = T (τ) whenever τ ∈ Dom(T) and Gτ (x, p) holds. That
is, for data values d and d′ and each (u,v)-path τ , we have T (d, d′) = T (τ)
whenever Gτ (d, d′) is true. If L is a data language, then L[u,v] is a (u,v)-tree
representing membership in L in the sense that for any values of p1, . . . , pm
we have L[u,v](d, p) = + iff uα′

1(p1) . . . α
′
m(pm) ∈ L, and L[u,v](d, p) = − iff

uα′
1(p1) . . . α

′
m(pm) ̸∈ L. For example, Fig. 2 shows a (u,v)-tree where u =

push(d1) and v = push(p1)pop(p2). This tree maps the (u,v)-path true ∧ p2 = p1
to + and true ∧ p2 ≠ p1 to −. From this, we can determine, e.g., that the word
push(0)push(1)pop(1) ∈ L, but push(0)push(1)pop(2) ̸∈ L.

SLλ generates (u,v)-trees L[u,v] representing the language L to be learned
through so-called tree queries, which perform membership queries for values of
the data parameters p1, . . . , pm that cover relevant equivalence classes of ≈R.

From the results of tree queries, we can extract registers and guards in the
location reached by a prefix u. Intuitively, the registers must remember the data
values of u that occur in some guard in some L[u,v], and the outgoing guards
from the location reached by u can be derived from the initial guards in the
trees L[u,v], since the initial guards represent the constraints that are used when
processing the first symbol of v. Let memv(u), the set of memorable parameters,
denote the set of registers among {x1, . . . , xk} that occur on some (u,v)-path
in Dom(L[u,v]). Intuitively, if xi is a memorable parameter, then the ith data
value in u will be remembered in the register xi in the location reached by u.
For example, for the stack in Fig. 1, in the location reached by push(0) the data
value d1 = 0 is memorable so will be remembered in register x1. Note that a
(u,v)-tree itself does not have any registers: it only serves to show which registers
are needed in the location reached by u in the to-be-constructed automaton.
Define memV(u) as ∪v∈Vmemv(u). For a prefix u and symbolic suffix v whose
first action is α, let G{v}(u, α) denote the initial guards in the (u,v)-tree L[u,v],
with p1 replaced by p. For a set V, let GV(u, α) denote the set of satisfiable
conjunctions of guards in G{v}(u, α) for v ∈ V with first action α.

Two (u,v)-trees, T and T ′, are equivalent denoted T ≡ T ′, if Dom(T) =
Dom(T ′) and T (τ) = T ′(τ) for each τ ∈ Dom(T). For a mapping γ on registers,
we define its extension to (u,v)-paths in the natural way. For a (u,v)-tree T , we
define γ(T) by Dom(γ(T)) = {γ(τ) : τ ∈ Dom(T)} and γ(T)(γ(τ)) = T (τ).

10 S. Dierl et al.

Let u ≡V u′ denote that L[u,v] ≡ L[u′,v], for all symbolic suffixes v ∈ V.
Let u ≃γ

V u′ denote that γ is a bijection from memV(u) to memV(u′) such that
for all v ∈ V we have γ(L[u,v]) ≡ L[u′,v]. Let u ≃V u′ denote that u ≃γ

V u′

for some bijection γ. Intuitively, two words u and u′ are equivalent if there is
a bijection γ which for each v ∈ V transforms L[u,v] to L[u′,v], Note that in
general, when u ≃V u′, there can be several such bijections.

Data Structures. During the construction of a hypothesis, the SLλ algorithm
maintains: (i) a prefix-closed set Sp of short prefixes, representing locations,
(ii) and a set of one-symbol extensions of the prefixes in Sp, representing transi-
tions; we use U to represent the union of Sp and this set, and (iii) a suffix-closed
set V of symbolic suffixes. Each one-symbol extension of form uα(d) is formed to
let d satisfy a specific guard g; we then always choose d as a representative data
value, denoted dgu, satisfying g after u.

The sets U and V are maintained in a classification tree CT , which is designed
to represent how the suffixes in V partition the set U into equivalence classes
corresponding to locations. A classification tree is a rooted tree, consisting of
nodes connected by edges. Each inner node is labeled by a symbolic suffix, and
each leaf is labeled by a subset of U . To each node N is assigned a representative
prefix rp(N) in U . For a node N , let suff (N) its suffix and V(N) denote the set
of symbolic suffixes of N and all its ancestors in the tree. Each outgoing edge
from N corresponds to an equivalence class of ≃V(N) from which a representative
member is chosen as the representative prefix of its target node. Each leaf node N
is labeled by a set of data words, which are all in the same equivalence class of
≃V(N). Thus, nodes in different leaves are guaranteed to be inequivalent, since

they are separated by the symbolic suffixes in V(lca(N, N ′)), where lca(N, N ′)
is the lowest common ancestor node of N and N ′. We let U denote the mapping,
which maps each prefix u ∈ U to the classification tree leaf where it is contained.
We also let V(u) denote V(U(u)), the suffixes of all ancestors of U(u). The
representative prefix, rp(N), of each leaf node N will induce a location in the
RA to be constructed.

The insertion of a new prefix u into the classification tree CT is performed by
function Sift (cf. Algorithm 1). It traverses the CT from the root downwards. At
each internal node N , it checks whether u ≃V(N) rp(N

′) for any child N ′ of N .

If so, it continues the traversal at N ′, otherwise a new child of N is created as a
leaf N with rp(N) = u. When reaching a leaf N , the mapping U is updated to
reflect that u has been sifted to N . In the classification tree in Fig. 4, e.g., ϵ is the
representative prefix of inner nodes push(p1) and push(p2)push(p2) as it is the
first prefix that was sifted down this path. The short prefix push(0) at the second
leaf from right was sifted from the root to push(p1) and then to push(p1)push(p2)
as push(0) ≃{ϵ} ϵ and push(0) ≃{ϵ, push(p1)} ϵ. Since, however, push(0) ̸≃V ϵ for

V = {ϵ, push(p1), push(p1)push(p2)}, a new leaf was created and push(0) was
made the representative prefix of the new leaf and a short prefix.

The SLλ Algorithm. The core of the SLλ algorithm, shown in Algorithm 2,
initializes the classification tree to consist of one (root) inner node, for the empty

Scalable Tree-based Register Automata Learning 11

Algorithm 1: Operations on the Classification Tree.

Function Sift(u,N) is
if N is a leaf then U ← U [u 7→ N]
else

Compute L[u, suff (N)]
if N has child N ′ with u ≃V(N) rp(N

′) then Sift(u,N ′)

else
Create new leaf N ′ as child of N with rp(N ′) = u
Sift(u,N ′)

Function Expand(u) is
Sp ← Sp ∪ {u}
for α ∈ Σ do Sift(uα(dgu), root(CT)) for each g ∈ GV(u)(u, α)

Function Refine(N , v) is
Replace N by an inner node N ′ with suff (N ′) = v

for u ∈ U−1(N) do Sift(u,N ′)

suffix (which classifies words as accepted or rejected); U and Sp are empty. It
then sifts the empty prefix ϵ, thereby entering it into U . Thereafter, Algorithm 2
repeats a main loop in which CT is checked for a number of closedness and
consistency properties. Whenever such a property is not satisfied, a corrective
update is made by adding information to CT . These corrective updates fall into
two categories, carried out by the following functions:

– Expand takes a prefix u ∈ U and makes it into a short prefix. Since each
short prefix must have a set of one-symbol extensions in U , the function
forms one-symbol extensions of form uα(dgu), which are entered into the
classification tree by sifting.

– Refine takes a leaf node N and a symbolic suffix v; it sifts the prefixes u
in N , thereby obtaining L[u,v] from a tree query. This can either split N
into several equivalence classes, refine the initial guards or extend the set of
registers in the location represented by N .

Let us now describe the respective corrective updates in Algorithm 2.

Location Closedness is satisfied if each leaf contains a short prefix in Sp. Whenever
a leaf N does not contain a short prefix in Sp, one of its prefixes u is chosen for
inclusion in Sp by calling Expand(u), which adds one-symbol extensions to U .

Transition Closedness is satisfied if for each short prefix u, action α, and initial
guard in GV(u)(u, α), the extension uα(dgu) is in U . If this is not satisfied, the
missing uα(dgu) is added to U by sifting into CT .

Register Closedness is satisfied if for each pair of prefixes u and uα(d) in U , the
memorable parameters found for u contain the memorable parameters revealed
by the suffixes for uα(d), except for x|u]+1, where |u] is the length of u. Register
closedness guarantees that in a hypothesis H, values of registers in the location of

12 S. Dierl et al.

Algorithm 2: SLλ Learning.

Initialize CT as inner node root(CT) with suffix ϵ and U ← ∅, Sp ← ∅
Sift(ϵ, root(CT))

HYP: repeat
▷ Check closedness

if exists leaf N for which U−1(N) ∩ Sp = ∅ then // location

Expand(u) for some u ∈ U−1(N)

if u ∈ Sp and g ∈ GV(u)(u, α) but uα(dgu) /∈ U then // transition

Sift(uα(dgu), root(CT))

if uα(d) ∈ U s.t. memV(uα(d))(uα(d)) ̸⊆memV(u)(u)∪{x|u]+1} then // register

Let v ∈ V(uα(d)) with memv(uα(d))) ̸⊆ (memV(u)(u) ∪ {x|u]+1})
Refine(U(u),αv)

▷ Check consistency

if u, u′ ∈ U−1(L) ∩ Sp with u ≃γ
V(N) u

′ for leaf N with

uα(dgu), u
′α(d

γ(g)

u′) ∈ U but U(uα(dgu)) ̸= U(u′α(d
γ(g)

u′)) then // location

Refine(U(u),αv) with v = suff (lca(uα(dgu), u′α(d
γ(g)

u′)))

if g ∈ GV(u)(u, α) and uα(dgu), uα(d) ∈ U with (u, d) ⊨ g but

U(uα(dgu)) ̸= U(uα(d)) then // transition(a)

Refine(U(u),αv) with v = suff (lca(uα(dgu), uα(d)))

if uα(dgu), uα(d) ∈ U with uα(dgu) ̸≃id
V(uα(d)) uα(d) then // transition(b)

Refine(U(u),αv) with v s.t. uα(dgu) ̸≃id
{v} uα(d)

if u, uα ∈ U with u ≃γ
V(u) u and no extension γ′ of γ with

uα(d) ≃γ′

V(uα(d)) uα(d) then // register

Refine(U(u),αv) with v s.t. uα(d) ̸≃γ′

{v} uα(d) for any γ′

until closed and consistent

H ← Hypothesis(CT)

if ∃w ∈ Σ+ s.t. H(w) ̸= L(w) then Analyze(w) and goto HYP else return H

uα(d) can all be obtained by assignment from the registers in location u and the
just received parameter. If it is not satisfied, a suffix v for uα(d) which reveals a
missing register is prepended by α(p1) and added to the suffixes for u, whereafter
Refine(U(u),αv) will reveal the missing parameter. Here, and in the following, we
use α to denote α(p1), and αv to denote the result α(p1)α

′
2(p2) . . . α

′
m+1(pm+1) of

prepending α to v = α′
1(p1) . . . α

′
m(pm). If possible, we try to choose a shortest v,

and also restrict the parameters of αv to reduce the cost of the tree query for
L[u,αv].

Location Consistency. Analogously to consistency in the classic L∗ algorithm,
we split a leaf containing two short prefixes u, u′, in case their correspond-
ing extensions are not equivalent, i.e., there is a g ∈ GV(u)(u, α) such that

U(uα(dgu)) ̸= U(u′α(dγ(g)u′)). The splitting is done by calling Refine(U(u),αv),

Scalable Tree-based Register Automata Learning 13

where v is the symbolic suffix labeling the common ancestor of the leaves of

uα(dgu) and u′α(dγ(g)u′).

Transition Consistency is satisfied if all one-symbol extensions uα(d) that satisfy
some guard g in GV(u)(u, α), are sifted to the same leaf as the extension uα(dgu)
with the representative data value dgu. If not, the guard g should be split by calling
Refine(U(u),αv), where v is the symbolic suffix labeling the common ancestor
of the leaves of uα(dgu) and uα(d). A similar case (Transition Consistency(b))
occurs when uα(dgu) and uα(d) are sifted to the same leaf, but are not equivalent
under the identity mapping between registers. Also here, the guard g should
be split by calling Refine(U(u),αv), where v is a shortest suffix under which
uα(dgu) ̸≃id

{v} uα(d).

Register Consistency. For some short prefix u with memorable values memV(u)(u),
there may be symmetries in L[u,v] for some v ∈ V(u), i.e., for some permutation γ
on memV(u)(u) we have u ≃γ

V(u) u. It may be that this symmetry does not exist

in the SUL, but we did not yet add a suffix that disproves it (cf. example
in Appendix A) Register consistency checks for the existence of such suffixes by
comparing symmetries in u and its continuations uα(d). If a symmetry between
data values of u does not exist in uα while one or more of the data values are
memorable in uα, we can construct a suffix that breaks the symmetry also for u.

Restricted Symbolic Suffixes. To reduce the number of membership queries
for tree queries of form L[u,v], we impose, when possible, restrictions to the
parameters of v, meaning that L[u,v] represents acceptance/rejection of uv only
for the suffix parameters that satisfy the imposed restrictions. An illustration was
given at the end of Section 2. A more detailed description is in Appendix B. Since
a restricted symbolic suffix v′ represents fewer actual suffixes than an unrestricted
one v, it has less separating power, so suffixes should only be restricted if their
separating power is sufficient. The principles for adding restrictions are specific
to the theory; we have implemented them for the theory ⟨N, {=}⟩. There, we
consider two forms of restrictions on suffix parameters pi: (i) fresh(pi), meaning
that pi is different from all other preceding parameters in the prefix and suffix,
(ii) pi = pj , where j < i, i.e., pj is an earlier parameter in the restricted suffix.
Let us consider how restricted suffixes arise when prepending an action α to an
existing suffix v, in a call of form Refine(U(u),αv), in the case that u, α, and v
are chosen such that memv(uα(d))) contains a particular memorable parameter.
Let us denote the parameters of αv by p1, · · · , p|v|+1. The restriction of suffix
αv is then obtained by

1. letting the parameter of α be fresh if d is not equal to a previous data value
in u, and

2. restricting each parameter pi with i > 1 in αv to be (i) fresh whenever pi−1

is fresh in v or the branch taken in L[uα(d),v] for fresh pi−1 reveals the
sought register, and (ii) equal to a previous value pj in αv if the branch
taken in L[uα(d),v] for pi−1 equal to the corresponding value reveals the
sought register.

14 S. Dierl et al.

Algorithm 3: Analyze Counterexample.

Function Analyze(w) is
for |w| ≥ i > 0 do

for u ∈ As(w1:i−1) do
Let uα(dgu) ∈ U represent the last transition of w1:i in H
Let v = Acts(wi+1:|w|) (or ϵ for i = |w|)
if uα(dgu) ̸≃{v} u′ for all u′ ∈ As(w1:i) then // location

Expand(uα(dgu)) and stop analysis of w
if initial guard g in L(u,αv) but no uα(dgu) ∈ U then // transition

Sift(uα(dgu), root(CT)) and stop analysis of w

Hypothesis Construction. We can construct a hypothesis from a closed and
consistent classification tree. Location closedness ensures that every transition
has a defined source and target location, transition closedness ensures that
every transition that is observed by the tree queries we have performed so far,
is represented by a prefix, and register closedness ensures that registers exist
for all memorable data values in corresponding locations. Location consistency,
transition consistency, and register consistency ensure that we can construct a
unique (up to naming of locations and registers) determinate register automaton
eventhough there may exist multiple short prefixes for one location and symmetries
betweeen memorable data values.

We construct the register automaton A = (L, l0,X , Γ, λ), where

– L is the set of leaves of CT , and l0 is the leaf containing the empty prefix ϵ,
– X maps each location l ∈ L to memCT (u), where u is the representative

short prefix of the leaf corresponding to l, and
– λ(l) = + if the leaf l is in the accepting subtree of the root, else λ(l) = −.
– for every location l with short prefix u, action α, and guard g in GV(u)(u, α),

there is a transition ⟨l, α(p), g, π, l′⟩, where
• l′ = U(uα(dgu)) is the target location, and
• π (the assignment) is defined by γ for which uα(dgu) ≃

γ
V(uα(dgu))

rp(uα(dgu))

Analysis of Counterexamples. When an equivalence query returns a coun-
terexample w, we process the counterexample as is shown in Algorithm 3. From
right to left, we split the counterexample at every index into a location prefix
w1:i−1, a transition prefix w1:i, and a suffix wi+1:|w|. We use the location and
transition prefixes to find corresponding short prefixes u and prefixes uα(dgu) by
tracing w1:i−1 and w1:i on the hypothesis. We write As(w1:i) for the short prefix
corresponding to the location reached by w1:i in a hypothesis and V als(w) for
the sequence of actions of w. We can then distinguish two cases: (1) The word
uα(dgu) is inequivalent to all corresponding short prefixes for the suffix of the
counterexample. In this case, we make uα(dgu) a short prefix. (2) The tree query
L(u,αv) shows a new initial guard. In this case, we add the corresponding (new)
prefix uα(dgu) to the set of prefixes. If neither case applies, we continue with the
next index. Since w is a counterexample, one of the cases will apply for some
index (cf. Lemma 1).

Scalable Tree-based Register Automata Learning 15

5 Correctness and Complexity

Let us now briefly discuss the correctness and query complexity of SLλ. The
correctness arguments are analogous to the arguments presented for other active
learning algorithms. One notable difference to SL∗ is that SLλ establishes register
consistency instead of relying on counterexamples for distinguishing symmetric
registers. Proofs and a more detailed discussionan be found in Appendix C.

Lemma 1. A counterexample leads to a new short prefix or to a new prefix.

This is a direct consequence of Algorithm 3. Using a standard construction that
leverages properties of counterexamples (cf. [10,39]), it can be shown that one of
the two cases in the algorithm will trigger for some index of the counterexample.
As long as expanding (or sifting) new prefixes does not trigger a refinement, the
current counterexample can be analyzed again, until a refinement occurs.

Lemma 1 establishes progress towards a finite RA for a language L. Let m
be the length of the longest counterexample, t the number of transitions, r the
maximal number of registers at any location, and n the number of locations in
the final model. (t dominates both n and r.)

Theorem 1. SLλ infers a RA for regular data language L with O(t) equivalence
queries and O(t2 nr+tmnmm) membership queries for sifting words and analyzing
counterexamples.

O(t) is an improvement over the worst case estimate of O(tr) equivalence
queries for SL∗ [10]. SLλ also improves the worst case estimate for membership
queries for sifting to O(t2 nr) from O(t2r nr) for filling the table in SL∗. For
analyzing counterexamples, SLλ replaces O(trmmm) with O(tmnmm).

6 Evaluation

As mentioned, we have implemented the SLλ algorithm in the publicly available
RALib tool for learning register automata. RALib already implemented the SL∗

algorithm [10] that uses an observation table as its data structure. In order to
evaluate the effect of analyzing counterexamples as described in Section 4, we
have also implemented the SLCT classification tree learning algorithm that uses
the same counterexample analysis technique as the SL∗ algorithm, i.e., adding
suffixes from counterexamples to the classification tree directly. We compare the
performance of the SLλ algorithm against that of SL∗ and SLCT . All models,
the experimental setup, and infrastructure for executing the experiments are
available on the paper’s artefact at Zenodo [41] and updated versions on GitHub5.

Experimental Setup.We use two series of experiments: (1) A black-box learning
setup with random walks for finding counterexamples on small models from the
Automata Wiki [38] to establish a baseline comparison with other results and to

5 https://github.com/LearnLib/ralib-benchmarking

https://github.com/LearnLib/ralib-benchmarking

16 S. Dierl et al.

Table 1: Results on AutomataWiki Systems.
SUL Resets (Learn) Resets (Total) CounterExs WCT Learn [ms] WCT Test [ms]

|Q| |Γ | |X| |C| SL∗ SLλ SLCT SL∗ SLλ SLCT SL∗ SLλ SLCT SL∗ SLλ SLCT SL∗ SLλ SLCT

channel-frame 5 8 3 2 11 11 15 24 28 32 1 2 2 49 43 36 295 289 294
abp-receiver3 6 10 3 2 489 88 466 614 249 610 4 4 4 147 74 245 256 282 264
palindrome 6 15 4 0 479 358 476 508 384 504 5 5 5 73 52 51 406 403 402
login 12 19 4 0 436 244 433 509 300 512 3 2 3 86 54 67 301 303 310
abp-output 30 50 1 2 363 208 311 590 4 552 6 151 5 11 11 142 151 696 260 175 154
sip 30 72 2 0 487 233 345 934 3 633 2 772 9 15 16 370 347 353 194 149 160

fifo3 12 16 4 0 29 24 23 212 202 209 5 5 5 114 106 108 547 636 563
fifo5 18 24 6 0 66 55 60 435 434 468 6 7 7 1 303 1 144 1 451 575 600 584
fifo7 24 32 8 0 118 96 123 738 839 989 7 8 9 317 435 279 888 346 897 589 591 583

evaluate the impact of using non-minimal counterexamples. In these experiments,
we verify with a model checker that the inferred model is equivalent to the SUL
and we stop as soon as the correct model is produced by a learning algorithm.
(2) A white-box setup with a model checker for finding short counterexamples to
analyze the scalability of algorithms on (2a) 24 consecutive hypotheses of the
Mbed TLS 2.26.0 server,6 as well as (2b) sets of randomly generated automata.7

All results were obtained on a MacBook Pro with an Apple M1 Pro CPU and
32 GB of memory, running macOS version 12.5.1 and OpenJDK version 17.0.8.1.

Results. Table 1 summarizes the results of the experiments in a black-box learn-
ing setup. For every SUL, we report its complexity (in number of locations |Q|,
transitions |Γ |, registers |X|, and constants |C|) and, for each learning algorithm,
the number of resets (i.e., tests) during the learning phase, total tests (incl. coun-
terexample search), the number of counterexamples found, and wall clock times
(WCT) for learning and testing. In Table 1, all numbers are averages from 20
experiments. It can be seen that the SLλ algorithm consistently outperforms
the other two algorithms w.r.t. the number of tests during learning. As can be
expected, the SL∗ algorithm requires the fewest counterexamples. Execution
times do not show a consistent pattern for these small systems or a clear ‘winner’
between these three RA learning algorithms, but there is a strong correlation
between the number of learner tests and the time that learning requires. Due to
this, in most cases, SLλ is fastest overall.

The SULs of the previous set of experiments were all quite small (|Γ | ≤ 72),
and did not show any scalability differences between the three algorithms. Also,
with the exception of fifo, the benchmarks were not parametric. In the following
experiments, we scale the SULs which are learned.

Figure 5 shows the results of our experiments with DTLS models. For each
algorithm, the graphs show the relationship between the number of transitions in
each hypothesis model and the number of resets with restricted and unrestricted

6 We obtained these hypotheses by extending the machinery of DTLS-Fuzzer [16], a
publicly available tool for learning state machine models of DTLS implementations.

7 We used the algorithm of Champarnaud and Paranthoën [11] to enumerate seman-
tically distinct DFAs with a specific alphabet and number of locations. We then
replaced the alphabet symbols with RA actions of arity one, and finally replaced a
fraction of the transitions with simple gadgets that store and compare data values.

https://github.com/Mbed-TLS/mbedtls/releases/tag/v2.26.0
https://github.com/assist-project/dtls-fuzzer

Scalable Tree-based Register Automata Learning 17

0 50 10
0

15
0

20
0

25
0

0

10k

20k

Transitions

R
es
et
s
(r
es
tr
ic
te
d
su
ffi
x
es
)

SL∗

SLλ

SLCT

0 50 10
0

15
0

20
0

25
0

0

50k

100k

150k

Transitions

R
es
et
s
(u
n
re
st
ri
ct
ed

su
ffi
x
es
)

SL∗

SLλ

SLCT

0 50 10
0

15
0

20
0

25
0

0

20

40

60

Transitions

C
o
u
n
te
re
x
a
m
p
le
s

SL∗

SLλ

SLCT

0 50 10
0

15
0

20
0

25
0

0

60

120

180

Transitions

W
C
T

[s
]

SL∗

SLλ

SLCT

Fig. 5: Number of resets (two leftmost graphs), counterexamples (3rd graph), and
wall clock times (4th graph) for inferring models of the Mbed TLS 2.26.0 server.

0 1,000 2,000 3,000 4,000

0

20k

40k

60k

Transitions (scaling locations or actions)

R
es
et
s

SL∗

SLλ

SLCT

2,000 2,200 2,400 2,600

0

20k

40k

Transitions (scaling data operations)

R
es
et
s
(r
es
tr
ic
te
d
su
ffi
x
es
)

SL∗

SLλ

SLCT

2,000 2,200 2,400 2,600

0

20k

40k

60k

80k

100k

Transitions (scaling data operations)

R
es
et
s
(u
n
re
st
ri
ct
ed

su
ffi
x
es
)

SL∗

SLλ

SLCT

Fig. 6: Resets for inferring models of generated SULs, scaling the number of
transitions through locations and actions as well as by increasing the percentage
of transitions with data operations using restricted and unrestricted suffixes.

suffixes (in the first two graphs), the number of counterexamples (3rd graph), and
execution times (4th graph). It is evident that, with increasing model complexity,
the number of counterexamples grows linearly for all algorithms at roughly the
same rate, yet the number of resets grows much more rapidly for SL∗ than
it does for SLCT and SLλ. In terms of time performance, the trend is even
more pronounced. For SULs with more that 100 transitions, learning times grow
significantly worse for SL∗ than the other two algorithms, and SLλ clearly also
beats SLCT on even bigger systems.

Finally, Fig. 6 shows the results of the experiments with randomly generated
automata. The graphs show how the number of resets scales with the number of
locations and actions (left) and the number of registers when using both restricted
(center) and unrestricted suffixes (right). The number of resets grows much more
rapidly for SL∗ than for the other algorithms. Not restricting suffixes leads to a
2–4x increase in resets; notice the different scales on the y-axis.

Overall, the experiments show a clear advantage of SLλ over table-based RA
learning algorithms in terms of the number of resets and execution times for
bigger systems. These results confirm the theoretical properties of the algorithms
and are consistent with the behavior of AAL algorithms for FSMs.

18 S. Dierl et al.

7 Conclusion

We have presented SLλ, a scalable tree-based algorithm for register automata
learning. SLλ reduces the membership queries needed for inferring RA models by
constructing short restricted suffixes incrementally. This enables active learning
in scenarios not feasible with previous algorithms. We prove a reduction in the
worst-case number of tests and, via a practical evaluation, show performance
improvements on both real-world (i.e., on a complex network protocol) and
synthetic models compared to the state-of-the-art RA learning algorithm.

Acknowledgements This research was partially funded by the Swedish Re-
search Council (Vetenskapsr̊adet), the Swedish Foundation for Strategic Research
through project aSSIsT, the Knut and Alice Wallenberg Foundation through
project UPDATE, and the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) projects 495857894 (STING) and 442146713 (NFDI4Ing). We
thank these funding agencies and the TACAS 2024 reviewers for their comments.

References

1. Aarts, F., Jonsson, B., Uijen, J., Vaandrager, F.: Generating models of infinite-state
communication protocols using regular inference with abstraction. Formal Methods
in System Design pp. 1–41 (2015). https://doi.org/10.1007/s10703-014-0216-x

2. Aarts, F., Fiterau-Brostean, P., Kuppens, H., Vaandrager, F.: Learning register
automata with fresh value generation. In: Leucker, M., Rueda, C., Valencia, F.D.
(eds.) Theoretical Aspects of Computing - ICTAC 2015. LNCS, vol. 9399, pp.
165–183. Springer International Publishing, Cham (2015). https://doi.org/10.1007/
978-3-319-25150-9 11

3. Aarts, F., Heidarian, F., Kuppens, H., Olsen, P., Vaandrager, F.: Automata learning
through counterexample guided abstraction refinement. In: Giannakopoulou, D.,
Méry, D. (eds.) FM 2012: Formal Methods. LNCS, vol. 7436, pp. 10–27. Springer,
Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9 4

4. Aarts, F., Jonsson, B., Uijen, J., Vaandrager, F.: Generating models of infinite-state
communication protocols using regular inference with abstraction. Formal Methods
in System Design 46(1), 1–41 (Feb 2015). https://doi.org/10.1007/s10703-014-0216-x

5. Aarts, F., Kuppens, H., Tretmans, J., Vaandrager, F.W., Verwer, S.: Learning
and testing the bounded retransmission protocol. In: Proceedings of the Eleventh
International Conference on Grammatical Inference, ICGI 2012. JMLR Proceedings,
vol. 21, pp. 4–18. JMLR.org (2012), http://proceedings.mlr.press/v21/aarts12a.html

6. Ammons, G., Bod́ık, R., Larus, J.R.: Mining specifications. In: Proc. 29th ACM
Symp. on Principles of Programming Languages. pp. 4–16. ACM (2002). https:
//doi.org/10.1145/503272.503275

7. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)
90052-6

8. Bollig, B., Habermehl, P., Leucker, M., Monmege, B.: A fresh approach to learning
register automata. In: Developments in Language Theory. LNCS, vol. 7907, pp.
118–130. Springer Verlag (2013). https://doi.org/10.1007/978-3-642-38771-5 12

https://assist-project.github.io/
https://gepris.dfg.de/gepris/projekt/495857894
https://gepris.dfg.de/gepris/projekt/442146713
https://doi.org/10.1007/s10703-014-0216-x
https://doi.org/10.1007/s10703-014-0216-x
https://doi.org/10.1007/978-3-319-25150-9_11
https://doi.org/10.1007/978-3-319-25150-9_11
https://doi.org/10.1007/978-3-319-25150-9_11
https://doi.org/10.1007/978-3-319-25150-9_11
https://doi.org/10.1007/978-3-642-32759-9_4
https://doi.org/10.1007/978-3-642-32759-9_4
https://doi.org/10.1007/s10703-014-0216-x
https://doi.org/10.1007/s10703-014-0216-x
http://proceedings.mlr.press/v21/aarts12a.html
https://doi.org/10.1145/503272.503275
https://doi.org/10.1145/503272.503275
https://doi.org/10.1145/503272.503275
https://doi.org/10.1145/503272.503275
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1007/978-3-642-38771-5_12
https://doi.org/10.1007/978-3-642-38771-5_12

Scalable Tree-based Register Automata Learning 19

9. Cassel, S., Howar, F., Jonsson, B.: RALib: a LearnLib extension for inferring EFSMs.
In: Proceedings of the 4th International Workshop on Design and Implementation
of Formal Tools and Systems (DIFTS). pp. 1–8 (2015), https://www.faculty.ece.vt.
edu/chaowang/difts2015/papers/paper 5.pdf

10. Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Active learning for extended finite
state machines. Formal Asp. Comput. 28(2), 233–263 (2016). https://doi.org/10.
1007/s00165-016-0355-5

11. Champarnaud, J.M., Paranthoën, T.: Random generation of DFAs. Theoretical
Computer Science 330(2), 221–235 (Feb 2005). https://doi.org/10.1016/j.tcs.2004.
03.072

12. Drews, S., D’Antoni, L.: Learning symbolic automata. In: Legay, A., Margaria, T.
(eds.) Tools and Algorithms for the Construction and Analysis of Systems. LNCS,
vol. 10205, pp. 173–189. Springer, Berlin, Heidelberg (2017). https://doi.org/10.
1007/978-3-662-54577-5 10

13. Esparza, J., Leucker, M., Schlund, M.: Learning workflow Petri nets. Fundamenta
Informaticae 113(3-4), 205–228 (2011). https://doi.org/10.3233/FI-2011-607

14. Ferreira, T., Brewton, H., D’Antoni, L., Silva, A.: Prognosis: Closed-box analysis
of network protocol implementations. In: ACM SIGCOMM 2021 Conference. pp.
762–774. ACM (Aug 2021). https://doi.org/10.1145/3452296.3472938

15. Fiterau-Brostean, P., Howar, F.: Learning-based testing the sliding window behavior
of TCP implementations. In: Critical Systems: Formal Methods and Automated
Verification - Joint 22nd International Workshop on Formal Methods for Industrial
Critical Systems - and - 17th International Workshop on Automated Verification of
Critical Systems, FMICS-AVoCS. LNCS, vol. 10471, pp. 185–200. Springer (2017).
https://doi.org/10.1007/978-3-319-67113-0 12

16. Fiterau-Brostean, P., Jonsson, B., Sagonas, K., T̊aquist, F.: DTLS-Fuzzer: A DTLS
protocol state fuzzer. In: 15th IEEE Conference on Software Testing, Verification
and Validation. pp. 456–458. ICST 2022, IEEE (Apr 2022). https://doi.org/10.1109/
ICST53961.2022.00051

17. Fiterau-Brostean, P., Jonsson, B., Sagonas, K., T̊aquist, F.: Automata-based au-
tomated detection of state machine bugs in protocol implementations. In: Net-
work and Distributed System Security Symposium. NDSS 2023, The Internet
Society (Feb 2023), https://www.ndss-symposium.org/wp-content/uploads/2023/02/
ndss2023 s68 paper.pdf

18. Fiterău-Broştean, P., Jonsson, B., Merget, R., de Ruiter, J., Sagonas, K.,
Somorovsky, J.: Analysis of DTLS implementations using protocol state
fuzzing. In: 29th USENIX Security Symposium (USENIX Security 20). pp.
2523–2540. USENIX Association (Aug 2020), https://www.usenix.org/conference/
usenixsecurity20/presentation/fiterau-brostean

19. Fiterău-Broştean, P., Janssen, R., Vaandrager, F.: Combining model learning and
model checking to analyze TCP implementations. In: Chaudhuri, S., Farzan, A. (eds.)
Computer Aided Verification. LNCS, vol. 9780, pp. 454–471. Springer International
Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6 25

20. Fiterău-Broştean, P., Lenaerts, T., Poll, E., de Ruiter, J., Vaandrager, F., Verleg,
P.: Model learning and model checking of SSH implementations. In: Proceedings of
the 24th ACM SIGSOFT International SPIN Symposium on Model Checking of
Software. pp. 142–151. ACM, New York, NY, USA (Jul 2017). https://doi.org/10.
1145/3092282.3092289

21. Frohme, M., Steffen, B.: Compositional learning of mutually recursive procedural
systems. International Journal on Software Tools for Technology Transfer 23(4),
521–543 (Aug 2021). https://doi.org/10.1007/s10009-021-00634-y

https://www.faculty.ece.vt.edu/chaowang/difts2015/papers/paper_5.pdf
https://www.faculty.ece.vt.edu/chaowang/difts2015/papers/paper_5.pdf
https://doi.org/10.1007/s00165-016-0355-5
https://doi.org/10.1007/s00165-016-0355-5
https://doi.org/10.1007/s00165-016-0355-5
https://doi.org/10.1007/s00165-016-0355-5
https://doi.org/10.1016/j.tcs.2004.03.072
https://doi.org/10.1016/j.tcs.2004.03.072
https://doi.org/10.1016/j.tcs.2004.03.072
https://doi.org/10.1016/j.tcs.2004.03.072
https://doi.org/10.1007/978-3-662-54577-5_10
https://doi.org/10.1007/978-3-662-54577-5_10
https://doi.org/10.1007/978-3-662-54577-5_10
https://doi.org/10.1007/978-3-662-54577-5_10
https://doi.org/10.3233/FI-2011-607
https://doi.org/10.3233/FI-2011-607
https://doi.org/10.1145/3452296.3472938
https://doi.org/10.1145/3452296.3472938
https://doi.org/10.1007/978-3-319-67113-0_12
https://doi.org/10.1007/978-3-319-67113-0_12
https://doi.org/10.1109/ICST53961.2022.00051
https://doi.org/10.1109/ICST53961.2022.00051
https://doi.org/10.1109/ICST53961.2022.00051
https://doi.org/10.1109/ICST53961.2022.00051
https://www.ndss-symposium.org/wp-content/uploads/2023/02/ndss2023_s68_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2023/02/ndss2023_s68_paper.pdf
https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean
https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1145/3092282.3092289
https://doi.org/10.1145/3092282.3092289
https://doi.org/10.1145/3092282.3092289
https://doi.org/10.1145/3092282.3092289
https://doi.org/10.1007/s10009-021-00634-y
https://doi.org/10.1007/s10009-021-00634-y

20 S. Dierl et al.

22. Frohme, M., Steffen, B.: Never-stop context-free learning. In: Olderog, E.R., Steffen,
B., Yi, W. (eds.) Model Checking, Synthesis, and Learning, LNCS, vol. 13030, pp.
164–185. Springer International Publishing, Cham (2021). https://doi.org/10.1007/
978-3-030-91384-7 9

23. Garg, P., Löding, C., Madhusudan, P., Neider, D.: Learning universally quantified
invariants of linear data structures. In: Sharygina, N., Veith, H. (eds.) Computer
Aided Verification. LNCS, vol. 8044, pp. 813–829. Springer, Berlin, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39799-8 57

24. Groz, R., Irfan, M.N., Oriat, C.: Algorithmic improvements on regular inference of
software models and perspectives for security testing. In: Proc. ISoLA 2012, Part I.
LNCS, vol. 7609, pp. 444–457. Springer (2012). https://doi.org/10.1007/978-3-642-
34026-0 41

25. Hagerer, A., Hungar, H., Niese, O., Steffen, B.: Model generation by moderated
regular extrapolation. In: Kutsche, R.D., Weber, H. (eds.) Fundamental Approaches
to Software Engineering, 5th International Conference, FASE 2002. LNCS, vol. 2306,
pp. 80–95. Springer Verlag (Apr 2002). https://doi.org/10.1007/3-540-45923-5 6

26. de la Higuera, C.: A bibliographical study of grammatical inference. Pattern Recog-
nition 38(9), 1332–1348 (Sep 2005). https://doi.org/10.1016/j.patcog.2005.01.003

27. Howar, F., Steffen, B.: Active automata learning in practice. In: Bennaceur, A.,
Hähnle, R., Meinke, K. (eds.) Machine Learning for Dynamic Software Analysis:
Potentials and Limits, LNCS, vol. 11026, pp. 123–148. Springer International
Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-96562-8 5

28. Howar, F., Steffen, B.: Active automata learning as black-box search and lazy
partition refinement. In: Jansen, N., Stoelinga, M., van den Bos, P. (eds.) A Journey
from Process Algebra via Timed Automata to Model Learning - Essays Dedicated
to Frits Vaandrager on the Occasion of His 60th Birthday. LNCS, vol. 13560, pp.
321–338. Springer (2022). https://doi.org/10.1007/978-3-031-15629-8 17

29. Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring canonical register automata.
In: Kuncak, V., Rybalchenko, A. (eds.) Verification, Model Checking, and Abstract
Interpretation. LNCS, vol. 7148, pp. 251–266. Springer, Berlin, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-27940-9 17

30. Hungar, H., Niese, O., Steffen, B.: Domain-specific optimization in automata
learning. In: Computer Aided Verification, 15th International Conference. LNCS,
vol. 2725, pp. 315–327 (Jul 2003). https://doi.org/10.1007/978-3-540-45069-6 31

31. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: A redundancy-free
approach to active automata learning. In: Runtime Verification: 5th International
Conference, RV 2014, Proceedings. LNCS, vol. 8734, pp. 307–322. Springer (Sep
2014). https://doi.org/10.1007/978-3-319-11164-3 26

32. Kearns, M., Vazirani, U.: An Introduction to Computational Learning Theory. MIT
Press (1994)

33. Linard, A., de la Higuera, C., Vaandrager, F.: Learning unions of k-testable lan-
guages. In: Mart́ın-Vide, C., Okhotin, A., Shapira, D. (eds.) Language and Automata
Theory and Applications. LNCS, vol. 11417, pp. 328–339. Springer International
Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-13435-8 24

34. Maler, O., Mens, I.E.: Learning regular languages over large alphabets. In: Tools
and Algorithms for the Construction and Analysis of Systems - 20th International
Conference,. LNCS, vol. 8413, pp. 485–499. Springer (2014). https://doi.org/10.
1007/978-3-642-54862-8 41

35. Margaria, T., Niese, O., Raffelt, H., Steffen, B.: Efficient test-based model generation
for legacy reactive systems. In: Proceedings of the Ninth IEEE International High-

https://doi.org/10.1007/978-3-030-91384-7_9
https://doi.org/10.1007/978-3-030-91384-7_9
https://doi.org/10.1007/978-3-030-91384-7_9
https://doi.org/10.1007/978-3-030-91384-7_9
https://doi.org/10.1007/978-3-642-39799-8_57
https://doi.org/10.1007/978-3-642-39799-8_57
https://doi.org/10.1007/978-3-642-34026-0_41
https://doi.org/10.1007/978-3-642-34026-0_41
https://doi.org/10.1007/978-3-642-34026-0_41
https://doi.org/10.1007/978-3-642-34026-0_41
https://doi.org/10.1007/3-540-45923-5_6
https://doi.org/10.1007/3-540-45923-5_6
https://doi.org/10.1016/j.patcog.2005.01.003
https://doi.org/10.1016/j.patcog.2005.01.003
https://doi.org/10.1007/978-3-319-96562-8_5
https://doi.org/10.1007/978-3-319-96562-8_5
https://doi.org/10.1007/978-3-031-15629-8_17
https://doi.org/10.1007/978-3-031-15629-8_17
https://doi.org/10.1007/978-3-642-27940-9_17
https://doi.org/10.1007/978-3-642-27940-9_17
https://doi.org/10.1007/978-3-540-45069-6_31
https://doi.org/10.1007/978-3-540-45069-6_31
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-030-13435-8_24
https://doi.org/10.1007/978-3-030-13435-8_24
https://doi.org/10.1007/978-3-642-54862-8_41
https://doi.org/10.1007/978-3-642-54862-8_41
https://doi.org/10.1007/978-3-642-54862-8_41
https://doi.org/10.1007/978-3-642-54862-8_41

Scalable Tree-based Register Automata Learning 21

Level Design Validation and Test Workshop. pp. 95–100. IEEE, New York, NY,
USA (Nov 2004). https://doi.org/10.1109/HLDVT.2004.1431246

36. Merten, M., Howar, F., Steffen, B., Cassel, S., Jonsson, B.: Demonstrating learning
of register automata. In: Flanagan, C., König, B. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems. LNCS, vol. 7214, pp. 466–471. Springer,
Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5 32

37. Moerman, J., Sammartino, M., Silva, A., Klin, B., Szynwelski, M.: Learning nominal
automata. In: Proc. 44th ACM Symp. on Principles of Programming Languages.
pp. 613–625. POPL ’17, ACM, New York, NY, USA (Jan 2017). https://doi.org/10.
1145/3093333.3009879

38. Neider, D., Smetsers, R., Vaandrager, F.W., Kuppens, H.: Benchmarks for automata
learning and conformance testing. In: Models, Mindsets, Meta: The What, the
How, and the Why Not? - Essays Dedicated to Bernhard Steffen on the Occasion
of His 60th Birthday. LNCS, vol. 11200, pp. 390–416. Springer (2018). https:
//doi.org/10.1007/978-3-030-22348-9 23

39. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
Information and Computation 103(2), 299–347 (1993). https://doi.org/10.1006/
inco.1993.1021

40. de Ruiter, J., Poll, E.: Protocol state fuzzing of TLS implementations. In: 24th
USENIX Security Symposium (USENIX Security 15). pp. 193–206. USENIX Asso-
ciation (Aug 2015), https://www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/de-ruiter

41. Sagonas, K., Jonsson, B., Howar, F., Dierl, S., Fiterau-Brostean, P., T̊aquist, F.:
Reproduction artifact for TACAS 2024 paper “Scalable tree-based register automata
learning” (Dec 2023). https://doi.org/10.5281/zenodo.10442556

42. Schuts, M., Hooman, J., Vaandrager, F.: Refactoring of legacy software using model
learning and equivalence checking: An industrial experience report. In: Ábrahám,
E., Huisman, M. (eds.) Integrated Formal Methods. LNCS, vol. 9681, pp. 311–325.
Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-
33693-0 20

43. Shahbaz, M., Groz, R.: Analysis and testing of black-box component-based systems
by inferring partial models. Software Testing, Verification and Reliability 24(4),
253–288 (2014). https://doi.org/10.1002/stvr.1491

44. Shu, G., Lee, D.: Testing security properties of protocol implementations - a
machine learning based approach. In: 27th IEEE International Conference on
Distributed Computing Systems (ICDCS 2007). IEEE Computer Society (2007).
https://doi.org/10.1109/ICDCS.2007.147

45. Sun, J., Xiao, H., Liu, Y., Lin, S.W., Qin, S.: TLV: abstraction through testing,
learning, and validation. In: Proceedings of the 2015 10th Joint Meeting on Foun-
dations of Software Engineering. pp. 698–709. ACM, New York, NY, USA (Aug
2015). https://doi.org/10.1145/2786805.2786817

46. Tappler, M., Aichernig, B.K., Bloem, R.: Model-based testing IoT communication
via active automata learning. In: IEEE International Conference on Software
Testing, Verification and Validation. pp. 276–287. IEEE Computer Society (Mar
2017). https://doi.org/10.1109/ICST.2017.32

47. Vaandrager, F., Bloem, R., Ebrahimi, M.: Learning Mealy machines with one
timer. In: Leporati, A., Mart́ın-Vide, C., Shapira, D., Zandron, C. (eds.) Language
and Automata Theory and Applications. LNCS, vol. 12638, pp. 157–170. Springer
International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-68195-
1 13

https://doi.org/10.1109/HLDVT.2004.1431246
https://doi.org/10.1109/HLDVT.2004.1431246
https://doi.org/10.1007/978-3-642-28756-5_32
https://doi.org/10.1007/978-3-642-28756-5_32
https://doi.org/10.1145/3093333.3009879
https://doi.org/10.1145/3093333.3009879
https://doi.org/10.1145/3093333.3009879
https://doi.org/10.1145/3093333.3009879
https://doi.org/10.1007/978-3-030-22348-9_23
https://doi.org/10.1007/978-3-030-22348-9_23
https://doi.org/10.1007/978-3-030-22348-9_23
https://doi.org/10.1007/978-3-030-22348-9_23
https://doi.org/10.1006/inco.1993.1021
https://doi.org/10.1006/inco.1993.1021
https://doi.org/10.1006/inco.1993.1021
https://doi.org/10.1006/inco.1993.1021
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://doi.org/10.5281/zenodo.10442556
https://doi.org/10.5281/zenodo.10442556
https://doi.org/10.1007/978-3-319-33693-0_20
https://doi.org/10.1007/978-3-319-33693-0_20
https://doi.org/10.1007/978-3-319-33693-0_20
https://doi.org/10.1007/978-3-319-33693-0_20
https://doi.org/10.1002/stvr.1491
https://doi.org/10.1002/stvr.1491
https://doi.org/10.1109/ICDCS.2007.147
https://doi.org/10.1109/ICDCS.2007.147
https://doi.org/10.1145/2786805.2786817
https://doi.org/10.1145/2786805.2786817
https://doi.org/10.1109/ICST.2017.32
https://doi.org/10.1109/ICST.2017.32
https://doi.org/10.1007/978-3-030-68195-1_13
https://doi.org/10.1007/978-3-030-68195-1_13
https://doi.org/10.1007/978-3-030-68195-1_13
https://doi.org/10.1007/978-3-030-68195-1_13

22 S. Dierl et al.

l0 l1 l2

l3

α(p) | true
x1:=p

α(p) | true
x2:=p

β(p) | x1=p
−

β(p) | x1 ̸=p
x1:=p;x2:=x1 α(p) | x1=p

−
α(p) | x2=p

−

β(p) | true
x1:=x2

ϵ

α(p)

β(p)

α(n)β(n)

ϵβ(1)
. . .

α(1) sym: {(1)}
α(1)α(2)β(3)

α(1)α(2) sym: {(12)}
α(1)β(2)

α(1)α(2)α(1)

α(1)α(2)α(2)
α(1)β(1)

{x12}

x1 = p
x2 = p

else

{x12}
x1 = p

else

Fig. 7: SUL (left) and Classification Tree (right) illustrating symmetry.

48. Vaandrager, F., Garhewal, B., Rot, J., Wißmann, T.: A new approach for active
automata learning based on apartness. In: Fisman, D., Rosu, G. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems. LNCS, vol. 13243, pp.
223–243. Springer International Publishing, Cham (2022). https://doi.org/10.1007/
978-3-030-99524-9 12

49. Vaandrager, F.W.: Model learning. Commun. ACM 60(2), 86–95 (Jan 2017). https:
//doi.org/10.1145/2967606

50. Volpato, M., Tretmans, J.: Active learning of nondeterministic systems from an
ioco perspective. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of
Formal Methods, Verification and Validation. Technologies for Mastering Change.
LNCS, vol. 8802, pp. 220–235. Springer, Berlin, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-45234-9 16

51. Walkinshaw, N., Bogdanov, K., Derrick, J., Paŕıs, J.: Increasing functional coverage
by inductive testing: A case study. In: Testing Software and Systems - 22nd IFIP
WG 6.1 International Conference, ICTSS 2010. LNCS, vol. 6435, pp. 126–141.
Springer (2010). https://doi.org/10.1007/978-3-642-16573-3 10

52. Yonesaki, N., Katayama, T.: Functional specification of synchronized processes
based on modal logic. In: Proceedings of the 6th Int. Conference on Software
Engineering. pp. 208–217. IEEE Computer Society Press (1982). https://doi.org/10.
5555/800254.807763

A Example: Symmetries in an SDT

The classification tree in Fig. 7 (right) represents all locations and transitions of
the RA (left). For the words in leaf α(1)α(2) there are symmetries that could
lead to an incorrect remapping. The symmetry is not in the RA. A check for
register consistency finds information to break it: in word α(1)α(2)β(3) only 2 is
memorable. This is a register inconsistency and can be resolved by refining the
leaf of α(1)α(2) by restricted suffix β(n)β(p).

https://doi.org/10.1007/978-3-030-99524-9_12
https://doi.org/10.1007/978-3-030-99524-9_12
https://doi.org/10.1007/978-3-030-99524-9_12
https://doi.org/10.1007/978-3-030-99524-9_12
https://doi.org/10.1145/2967606
https://doi.org/10.1145/2967606
https://doi.org/10.1145/2967606
https://doi.org/10.1145/2967606
https://doi.org/10.1007/978-3-662-45234-9_16
https://doi.org/10.1007/978-3-662-45234-9_16
https://doi.org/10.1007/978-3-662-45234-9_16
https://doi.org/10.1007/978-3-662-45234-9_16
https://doi.org/10.1007/978-3-642-16573-3_10
https://doi.org/10.1007/978-3-642-16573-3_10
https://doi.org/10.5555/800254.807763
https://doi.org/10.5555/800254.807763
https://doi.org/10.5555/800254.807763
https://doi.org/10.5555/800254.807763

Scalable Tree-based Register Automata Learning 23

B Imposing Restrictions on Symbolic Suffixes

As described in Section 2, a tree query for a prefix u and symbolic suffix v can be
realized by a bounded number of membership queries for selected values of the
data parameters of v. The number of these values can grow exponentially in the
length of v. In order to reduce this number, we impose additional restrictions on
the parameters of symbolic suffixes. We consider two forms of restrictions on suffix
parameters pi: (i) fresh(pi), meaning that pi is different from all other preceding
parameters in the prefix and suffix, (ii) pi = pj , where j < i, i.e., pj is an earlier
parameter in the suffix. How these restrictions are added to a symbolic suffix v
differs depending on the context. During analysis of counterexamples, symbolic
suffixes are formed from concrete prefixes and suffixes, so a direct comparison
can be made between parameters in the prefix and suffix. When adding a
symbolic suffix αv to the classification tree, e.g., in a call to Refine(U(u),αv),
the parameters of v are symbolic, so comparisons between parameters in the
prefix and suffix must instead be done using tree queries. Let us explain how
restrictions are added for these two different contexts.

Restricting Suffixes During Counterexample Analysis. During analysis of
a counterexample w = α1(d1) . . . αn(dn), we split w into a prefix α1(d1) . . . αk(dk)
and a suffix v = αk+1(dk+1) . . . αn(dn). When forming a symbolic suffix v from v,
restrictions on the parameters pi of v are obtained by

– letting pi be fresh if dk+i ̸= dj for any j < i.
– letting pi equal a preceding parameter pj if dk+i = dk+j , and pj is fresh.

For example, suppose that we find a counterexample push(0)push(1)pop(1)pop(0)
for hypothesis H0 of Fig. 3, and split it into prefix u = push(0) and suffix
push(1)pop(1)pop(0). When forming the symbolic suffix v = push(p1)pop(p2)pop(p3),
we observe that p1 can be fresh since the data value of push(1) does not equal
any preceding data value. Parameter p2 can be restricted as equal to p1 since
the data value of pop(1) is equal to that of push(1), and p1 is fresh. The last
parameter p3 cannot be restricted since the data value of pop(0) is equal to a
data value in the prefix, namely the data value of push(0). With the restrictions
⟨fresh(p1), p2 = p1⟩ on v, only three membership queries must be made when
performing the tree query L(u,v), as opposed to a total of fifteen membership
queries that would be required if v were unrestricted.

Restricting Suffixes Added to the Classification Tree. Whenever a sym-
bolic suffix is added to the CT , this suffix is formed by prepending a symbol α to
a symbolic suffix v ∈ V . In this case, since the parameters of v are symbolic, we
cannot compare them directly, so instead we compare guards from tree queries.

In the cases of register closedness or register consistency, the symbol α is
formed from a concrete symbol α(d) in a prefix uα(d). In these cases, u, α and v
are chosen such that memv(uα(d))) contains particular memorable parameters.
The parameters of αv can be restricted by examining the guards of L[uα(d),v].
Let us denote the parameter of α as p1 and the parameters of v as p2, . . . , p|v|+1.
The restrictions on suffix αv are then obtained by:

24 S. Dierl et al.

{x1, x2}

p2 = x2

p2 ̸= x2

p3 = x1

p3 ̸= x1

p3 = x2

p3 ̸= x2

(a) Tree query for prefix α(0)α(1).

{x1}

p2 = x1

p2 ̸= x1

true

true

(b) Tree query for prefix α(0).

Fig. 8: Tree queries for two prefixes with symbolic suffix α(p2)α(p3).

1. letting the parameter of α be fresh if d is not equal to any previous data
value in u, and

2. restricting each parameter pi with i > 1 in αv to be (i) fresh whenever pi−1

is fresh in v or the branch taken in L[uα(d),v] for fresh pi−1 reveals a sought
register, and (ii) equal to a previous value pj in αv if the branch taken
in L[uα(d),v] for pi−1 which is equal to the corresponding value reveals a
sought register.

As an example, assume that we have a prefix α(0)α(1) and symbolic suffix v =
α(p2)α(p3). We want to form an extended symbolic suffix αv = α(p1)α(p2)α(p3),
given the tree query L[α(0)α(1),v] shown in Fig. 8(left). The registers x1 and x2

are mapped to the data values 0 and 1, respectively, in the prefix. In this example,
the symbolic suffix αv is needed to reveal the memorable data value x1. First, we
restrict p1 to be fresh, since the data value of α(1) does not equal any preceding
parameter. Second, we restrict p2 to be equal to p1, as the tree query has guard
p2 = x2, and x2 corresponds to the fresh parameter p1. Finally, we note that p3
cannot be restricted, as there is a guard p3 = x1 and x1 maps to a data value in
u.

The case of transition consistency (b), where two prefixes uα(d) and uα(d′)
lead to the same location but are not equivalent under the identity mapping
between registers, is handled similarly to register consistency. Since uα(d) ̸≃id

v

uα(d′), we need only consider one of L[uα(d),v] and L[uα(d′),v] when imposing
restrictions on αv, with the caveat that one of d and d′ will be equal to a
parameter in u so the parameter of α cannot be restricted.

In the case of location consistency, we want to find a symbolic suffix αv that
separates two prefixes u and u′. As such, when we restrict αv, we must do so in
a way such that αv retains its ability to separate u and u′. Assume that we have
found two continuations uα(d) and u′α(d′) which lead to different locations. Let
us denote the parameter of α as p1 and the parameters of v as p2, · · · , p|v|+1. Now,
let τ ∈ Dom(L[uα(d),v]) be a (uα(d),v)-path and let τ ′ ∈ Dom(L[u′α(d′),v])
be a (u′α(d′)u,v)-path such that (i) the conjunction of the guard expressions
of τ and τ ′ is satisfied, and (ii) L[uα(d),v](τ) ̸= L[u′α(d′),v](τ ′). For each such
pair τ, τ ′ of paths, a restricted symbolic suffix αv(τ,τ ′) is obtained by

1. letting p1 be fresh if d does not equal any data value in u and d′ does not
equal any data value of u′,

Scalable Tree-based Register Automata Learning 25

2. letting each parameter pi with i > 1 be fresh if, in both τ and τ ′, the guard
for pi is either true or a disequality guard, and

3. restricting each parameter pi with i > 1 as equal to a preceding parameter
pj if (i) the only guard on pi in τ is pi = pj , (ii) the only guard on pi in τ ′ is
pi = pj , pi ̸= pj or true, and (iii) pj is fresh.

We choose as our restricted suffix αv the αv(τ,τ ′) with the smallest number
of unrestricted parameters. The case of transition consistency (a) is handled
similarly, with the only difference being that, in this case, u = u′.

As an example, assume we have two prefixes uα(d) = α(0)α(1) and u′α(d′) =
α(0), which lead to different locations with lowest common ancestor in CT being
v = α(p2)α(p3). The SDTs representing L[α(0)α(1),v] and L[α(0),v] are shown
in Fig. 8. Note that in both SDTs, x1 is mapped to the parameter of α(0) and x2

is mapped to the parameter of α(1). There are two pairs of paths (τ, τ ′) to choose
from which satisfy both conditions (i) and (ii), namely (1) τ = (p2 = x2, p3 = x1)
and τ ′ = (p2 = x2, p3 : true), or (2) τ = (p2 ̸= x2, p3 = x2) and τ ′ = (p2 ̸=
x2, p3 : true). We can restrict p1 as fresh, since d does not equal any parameter in
u and d′ does not equal any parameter in u′. For (1), we can restrict p2 = p1 as
it is equal to the parameter corresponding to p1 in both τ and τ ′ (the parameter
of α(1) for τ and of α(0) for τ ′), and p1 is fresh. However, we cannot place any
restriction on p3, since, in τ , p3 is equal to a data value in u (namely, x1). For
(2), we can restrict p2 to be fresh, since the guard is a disequality guard for both
τ and τ ′, and we can restrict p3 to be equal to p1 since p3 is equal to x2 (i.e.,
equal to p1) in τ and p3 has a true guard in τ ′. Since we have one unrestricted
parameter in αv for (1), but none for (2), we choose the set of restrictions of (2).
Thus, we restrict αv by ⟨fresh(p1), fresh(p2), p3 = p1⟩.

C Correctness and Complexity Proofs

In this appendix, we establish the correctness and complexity properties of SLλ.

Lemma 1. A counterexample always leads to a new short prefix (Case 1 of
Algorithm 3) or new prefix (Case 2 of Algorithm 3).

Proof. We know that at every index i, for u ∈ As(w1:i−1), it holds that

1. H(uα(dgu),v) ≡ H(u′,v) and that
2. H(u,αv) has a g-guarded subtree H(uα(dgu),v).

We also know that L(um, ϵ) ≡ H(um, ϵ) for um ∈ As(w1:m) because ϵ is the
symbolic suffix of the root in the classification tree and determines if the location
of um is accepting or rejecting. On the other hand, L(ϵ,v) ̸≡ H(ϵ,v) for v = w1:m

since w is a counterexample.
As a consequence, at some index i it must either be the case that L(uα(dgu),v) ̸≡

L(u′,v) or that L(u,αv) has a g′-guarded subtree that is not present in H(u,αv).
When analyzing a counterexample, we make uα(dgu) a short prefix (a prefix, re-
spectively). Either a refinement occurs immediately, or next time we arrive at the

26 S. Dierl et al.

same check uα(dgu) will be a short prefix (prefix, respectively) and the condition
will not be satisfied. The algorithm will continue with the next case or index of
the counterexample and the arguments given above apply. ⊓⊔

Let m be the length of the longest counterexample, t the number of transitions,
r the maximal number of registers at any location, and n the number of locations
in the final model.

Theorem 1. SLλ infers a RA for regular data language L with O(t) equivalence
queries and O(t2 nr+tmnmm) membership queries for sifting words and analyzing
counterexamples.

Proof. Every counterexample will lead to progress: the counterexample will
produce a new transition or a new short prefix and a corresponding refinement
is guaranteed to occur before the next equivalence query. The canonic acceptor
has a finite number of locations and transitions. By construction, the final model
will accept L.

The classification tree will have at most n+2r+2t = O(t) inner nodes (since
t ≥ n > r) created through refinement operations in Algorithm 2 on any path to
a leaf. Suffixes at these nodes tree have at most r unrestricted parameters. The
size of U is limited by t+ 1, resulting in at most O(t2) tree queries A tree query
in the classification tree results in at most O(nr) membership queries as prefixes
are of length n or shorter. The number of counterexamples is limited by t. For
the longest counterexample of length m, it can be necessary to compute mn tree
queries that each can require O(mm) membership queries in the worst case. ⊓⊔

This is an improvement over the worst case estimate of O(tr) equivalence
queries for SL∗ [10]. SLλ also improves the worst case for membership queries
for sifting to O(t2 nr) from O(t2r nr) for filling the table in SL∗.

For analyzing counterexamples, SLλ replaces SL∗’s O(trmmm) worst case
estimate with O(tmnmm), where t dominates n and r.

	Scalable Tree-based Register Automata Learning (Extended Version with Appendices)

