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Abstract. In 2015, LearnLib, the open-source framework for active au-
tomata learning, received the prestigious CAV artifact award. This paper
presents the advancements made since then, highlighting significant addi-
tions to LearnLib, including state-of-the-art algorithms, novel learning
paradigms, and increasingly expressive models. Our efforts to mature and
maintain LearnLib have resulted in its widespread use among researchers
and practitioners alike. A key factor in its success is the achieved com-
positionality which allows users to effortlessly construct thousands of
customized learning processes tailored to their specific requirements. This
paper illustrates these features through the development of a learning
process for the life-long learning of procedural systems. This development
can be easily replicated and modified using the latest public release of
LearnLib.
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1 Introduction

Active automata learning describes the process of inferring an automaton-based
model from a hardware or software system by means of actively querying it.
What originally started as a theoretical concept for language inference [9] has
in recent decades gained a lot of interest from practitioners due to the role of
automata learning as the key enabler of practical model-based quality assurance.
There exist several success stories that underline its practical relevance [67, 47, 3,
20, 2, 4, 72, 32, 64].

Tools are of paramount importance when applying these theoretical concepts
to practical scenarios. Unfortunately, by being mostly research-driven, many
tools are no longer developed or even maintained once the main researcher
or research group leaves the project. Specifically for active automata learning,
we have observed this trend with tools such as libALF [16] (last release in
2011), RALT [70] (never published, internal use at France Telecom until 2014),
AIDE [49] (development ceased in 2015), Sp2Learn [11] (development ceased
in 2016), Tomte [1] (latest release in 2016), SymbolicAutomata [25] (no major
contributions since 2019), or ROLL [53] (somewhat regular contributions, but
no stable releases). Currently, we are only aware of AALpy [59] that is being
actively developed and maintained.
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This paper highlights the significant advancements of LearnLib a decade after
receiving the CAV artifact award in 2015 [45]. These advancements include not
only new paradigms for addressing the challenges of practical automata learning
and the evolution of automata learning towards more expressive formalisms such
as procedural systems, but also enhanced compositionality. We demonstrate how
users can now easily construct thousands of customized learning processes tailored
to their specific needs. In particular, researchers can easily benchmark their new
learning algorithms against the state of the art by simply replacing components
in established learning processes, while application developers can seamlessly
compose tailored learning processes to evaluate their suitability for specific
requirements. This paper showcases this potential through the development of a
learning process for the life-long learning of procedural systems.

The open structure of LearnLib has inspired numerous researchers to con-
tribute by providing case studies and algorithms which can now be seamlessly
integrated as illustrated in this paper. We aim to further establish LearnLib as a
comprehensive resource for automata learning.

LearnLib is written in Java, open-source3, and released under the Apache 2.0
license4. It is deployed to Maven Central, the de-facto standard for various build
tools in the Java ecosystem, and therefore can be directly used in many projects.
Consequently, the developments presented in this paper can be easily replicated
and modified.

Outline We continue in Section 2 with an overview of the current features of
LearnLib and highlight the major additions of the last decade. Section 3 showcases
the flexibility of LearnLib to easily configure a requirements-based learning process.
In Section 4, we summarize our efforts to improve the development process of
LearnLib and the impact it had on the research community. Section 5 concludes
the paper and gives an outlook on the future of LearnLib.

2 New Features in LearnLib

Active automata learning usually operates within the minimally adequate teacher
framework as proposed by Angluin [9]. During the exploration phase, a learning
algorithm (or learner) queries the system under learning (SUL) for its behavior
through a membership oracle to construct a tentative hypothesis model of the SUL.
After hypothesis stabilization, an equivalence oracle then checks in the verification
phase whether the hypothesis model and the SUL are equivalent and, if not,
returns a counterexample (a witness for in-equivalence). This counterexample
is used by the learner to refine the current hypothesis model, which triggers a
subsequent exploration phase. The two phases alternate until the equivalence
oracle no longer finds any counterexamples. For details, see [74].

Figure 1 sketches the current features of LearnLib for the involved concepts
learning processes are composed of. For instantiating a learning process, the user
3 https://github.com/LearnLib/learnlib
4 https://www.apache.org/licenses/LICENSE-2.0
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only needs to define the symbolic interactions with the system (Symbols) and
provide a means to access it (SUL). All remaining parts are provided by LearnLib
and can be combined depending on the requirements of the user. In the following,
we highlight the novel additions to LearnLib.

Active Learning Algorithms Experiments [43] show that one bottleneck
of active automata learning typically lies in the performance of the SUL for
answering queries. As a result, many learners aim at reducing the number of
queries that they pose and the length thereof. We have developed the concept of
lazy partition refinement [41] which distills the idea of the TTT algorithm [46] to
represent hypothesis states with a redundancy-free, prefix-closed set of access
sequence while simultaneously distinguishing between them with a redundancy-
free, suffix-closed set of discriminators. LearnLib provides two incarnations of
this concept in the form of the Lλ algorithm (based on the L∗ algorithm [9]) and
the TTTλ algorithm (based on the TTT algorithm [46]).

A different approach to pursue this goal concerns refining the way in which
learners communicate with the SUL. The ADT learner [33] and the L# learner [78]
utilize adaptive distinguishing sequences to separate between hypothesis states.
By adaptively deciding which inputs to query next, they can discriminate between
more states, thus reducing the number of queries needed. The implementation of
the L# algorithm was contributed by Ferreira et al. as part of their work in [27].

The amount of system inputs can easily cause performance problems, too. To
address this issue, we implemented the concept of automated alphabet abstraction
refinement (AAAR) [42]. AAAR introduces an orthogonal learning process on
the behavioral equivalence classes of the input symbols (as long as such a finite
partition exists), incorporating input symbols in the learning process only when
really needed. It is worth noting that AAAR is not a single algorithm but a
generic concept which can be combined with various of the existing (regular)
learning algorithms.

Finally, Bayram [14] extended some of the existing learning algorithms to
natively support inferring Moore machines [58]. Being able to record intermediate
state outputs can increase the expressiveness of membership queries, boosting
the performance of learning processes in case the SUL supports these semantics,
too.

Another challenge for practical automata learning is the question whether
the chosen formalism is expressive enough to capture the system properties of
interest. We extended the scope of LearnLib to support the active inference
of context-free (or procedural) systems. The notion of systems of procedural
automata (SPAs) [35], systems of behavioral automata (SBAs) [36], and systems
of procedural Mealy machines (SPMMs) [34] describe systems that are composed
of multiple regular procedures that can mutually call each other. Similar to
AAAR, this allows for a generic meta-learner that can be parameterized in the
concrete learner(s) used for the internal procedures. Furthermore, the existing
OP algorithm [40] and TTT algorithm [46] have been extended [44] to support
the inference of visibly push-down automata (VPAs) [8].
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Equivalence Oracles Meijer and Pol [57] integrated the model checker LTSmin [48]
into LearnLib and therefore provided a means for black-box checking (BBC) [63].
Due to the clever use of LearnLib’s modular structure, the authors implement the
model checker as a special form of equivalence oracle which seamlessly integrates
into the existing hierarchy.

Smetsers et al. [73] discovered that adding fuzzying to methods from model-
based testing such as the (partial) W-method [21, 37] is able to boost the
performance of counterexample search. The implementations of the authors can
be used as drop-in replacements for the classic procedures.

Membership Oracles As an alternative to algorithmic properties for the
reduction of membership queries during learning, Geske [38] investigated the
concept of state-local alphabets which allow queries to be answered early if
non-available input symbols are encountered. This concept is implemented as an
independent query filter, making the approach compatible with various existing
types of membership oracles.

Another practical means to boost performance concerns the caching and paral-
lelization of queries. Vitorovic [80] introduced a new type of adaptive membership
queries which model a symbol-by-symbol style communication, contrasting the
typical preset queries. His work includes the respective caches and parallel oracles
which are implemented in a generic fashion so that they can be shared by adaptive
algorithms such as ADT and L#.

Performance Besides algorithmic properties, implementation details such as
architectural design decisions or the chosen programming language may also
impact (learning) performance. Typically, comparisons of tools (e.g., in [59])
are not conclusive and often depend on the considered use-cases. As a result,
we focused more on advancing conceptual features. For example, we improved
existing learner implementations by optimizing their batching of queries in order
to support a higher degree of parallelization if applicable and we added support
for suspending and resuming learning processes to allow for re-using intermediate
results in more sophisticated learning setups.

3 Construction of Custom Learning Processes

In this section we illustrate how LearnLib supports the construction of learning
processes tailored to specific requirements profiles. The example is included in
the artifact and can be used as the basis for experimentation. Additionally, the
entire learning process can also be easily implemented with the latest public
release of LearnLib (version 0.18.0).

3.1 Requirements

Let us assume that we are interested in controlling a procedural system (systems
that may comprise recursion) in a monitoring-based fashion to implement the
concept of life-long learning [15]. This implies that



– we need a procedural learner and
– monitoring requires us to support

• prefix-closed semantics as the monitor, ideally, records the subsequent
reactions to individual inputs, and

• extremely long counterexamples since the monitor may detect issues only
after days worth of operation.

Immediately, this makes certain options preferable over others.

➊ For modelling prefix-closed procedural systems either SBAs or SPMMs can
be used. Since our monitor records individual outputs, we choose SPMMs.

➋ Specific to procedural learners is the choice of a local learner for inferring
the involved procedures. We choose the TTT algorithm for this task as
it is specifically designed to handle the long counterexamples provided by
monitoring.

Another important characteristics of the chosen example is that it comprises two
phases:

– a phase for inferring a model for constructing the initial monitor, and
– the monitoring-based life-long learning phase.

In this paper, we focus on the first phase which is interesting because it comes
with quite some potential for optimization: we want to speed up the learning
process.

➌ Since we can easily spawn multiple local instances of our application, we
want to answer queries in parallel.

➍ To reduce the load on our application, we also want to remove duplicate
queries via the use of caching.

➎ Furthermore, we have specified a set of critical runs of our system that we
want to check during learning to not deploy a knowingly faulty application.

In contrast, the monitoring phase is a purely technical issue. One only has
to specify how the monitor can access the current hypothesis model and how
monitored traces can be used to refine the hypothesis model.

3.2 Implementation

Listing 1.1 sketches how these requirements can be implemented with LearnLib.

Membership Oracle After the initial setup of symbolic interactions and
instantiating our local testing instances, we begin with constructing the main
membership oracle that is going to be used by the learner (for exploration) and
the equivalence oracle (for verification). LearnLib’s design of membership oracles
innately supports the processing of query batches. Via convenient factory methods,
LearnLib provides special parallel oracles that split these batches according to
a selectable strategy and distribute the (sub-) batches to the provided oracle



1 // setup
2 var alphabet = ...
3 var instance1 = ...
4 var instance2 = ...
5

6 // membership oracles
7 var parallel = ParallelOracleBuilders.newStaticParallelOracle(instance1,

instance2).create(); ➌

8 var mqo = MealyCaches.createCache(alphabet, parallel); ➍

9

10 // equivalence oracles
11 var sample = new SampleSetEQOracle<Input,

Word<Output>>().addAll(requirements); ➎

12 var wMethod = new WMethodEQOracle<>(mqo);
13 var eqo = new EQOracleChain<>(sample, wMethod);
14

15 // learner
16 var learner = new SPMMLearner<>(alphabet, Output.ERROR, mqo,

TTTAdapterMealy::new ➋ ); ➊

17

18 // learning loop
19 learner.startLearning();
20 var hyp = learner.getHypothesisModel();
21 DefaultQuery<Input, Word<Output>> cex;
22 while ((cex = eqo.findCounterExample(hyp, alphabet)) != null) {
23 learner.refineHypothesis(cex);
24 hyp = learner.getHypothesisModel();
25 }
26

27 // continue to work with the model
28 startMonitor(learner);

Listing 1.1. Construction of the discussed learning process. Encircled numbers reference
the respective requirements of the example.

instances. Yet, due to clever use of abstraction, these oracles appear as regular
membership oracles to the outside. As a result, we can use the same instance as
a delegate for our query cache. Note that we simply re-use a Mealy cache for this
purpose because both formalisms are transition output systems. Using a simple
decorator pattern, users are able to construct powerful query chains which can
easily integrate custom extensions such as query filters (e.g., to only focus on a
specific part of the system) or counters (e.g., to measure the workload on the
SUL).

Equivalence Oracle In a similar fashion, equivalence oracles can be composed.
LearnLib provides out-of-the-box implementations for many of the conventional
equivalence tests. The power comes from being able to combine them. In our
example, we build an equivalence oracle chain which sequentially asks each of its



inner oracles for counterexamples. First, we use a sampling oracle that simply
checks the traces from our previously prepared requirements. Once these traces no
longer expose any in-equivalences, we use the W-method for a more methodical
test-case generation. Due to the oracle chain, we can abstract all these steps (and
potentially more) behind a simple object.

Learner Finally, the learner is set up. As discussed in our requirements, specific
to procedural systems is the concept of a meta-learner which can be parameterized
in its sub-learner(s). Here, we instantiate the SPMM learner and select the TTT
algorithm as its procedural learner. The SPMM learner only requires a learner
for (regular) Mealy machines, so many other algorithms in LearnLib (or custom
ones) can be used, too.

It should be noted that learners can typically be configured with specific
counterexample analysis strategies. In our case, however, we can omit this step
for two reasons.

– Because SPMMs are context-free, the prefix-closed semantics guarantees
that no analysis is required to identify the procedure call responsible for an
error, because it is always the same as the procedure call where the error is
observed.

– LearnLib uses convention over configuration when reasonable. For the pro-
cedural learner, we consider the default binary search-based analysis as
adequate.

For other settings, like SPAs or SBAs, LearnLib provides 36 options alone for the
(combined) choices of global and procedural counterexample analysis algorithms.

Learning Loop The actual learning process is a simple while-loop that alter-
nates between the exploration and verification phase (cf. Section 2). The loop
terminates once the equivalence oracle is no longer able to find counterexamples.

Monitoring The learner and the equivalence oracle only communicate via
counterexamples. As a result, the very same learner can simply receive counterex-
amples from the monitor and continue its original learning process. In particular,
we do not need to reset any progress but can seamlessly integrate the existing
components in the new context. Due to space reasons, we skip the details of the
monitor execution. However, from the learning loop, it should be clear how the
monitor can access the current hypothesis model and how monitored traces can
be used to refine the hypothesis model. The involved workflow is identical to the
presented one.

3.3 Takeaways

With LearnLib it is possible to construct complex and intricate learning setups by
composing them from simple and easy-to-understand components. The driving



forces behind this ability are the rigorous notion of abstraction and composition.
For users, this manifests in two ways.

First, LearnLib provides the building blocks for highly specialized learning
setups, all while maintaining compatibility between the involved structures.
For example, had we chosen the acceptor-based SBA formalism instead of the
transducer-based SPMM formalism, only the output type would have changed
from Word<Output> to Boolean. For the rest, the same notion of composition for
membership oracles, equivalence oracles, and (procedural) learners would have
been available.

Second, LearnLib establishes functional contracts which allow for highly
extensible implementations. In Listing 1.1, each concept ((procedural) learning
algorithm, membership oracle, equivalence oracle, etc.) could have been replaced
with a custom implementation without impeding the overall workflow.

From a practitioner’s perspective this allows for easy building of use-case
specific adaptations and optimizations to improve the overall experience when
applying automata learning in practice. From a researcher’s perspective, LearnLib
provides a rich framework in which novel concepts can be implemented and directly
evaluated in a multitude of different contexts.

4 Impact on the Community

Over the years, we continuously improved the experience for potential users. On
the technical side, we enhanced the build process of LearnLib to include several
industry standards (such as static code analysis and test coverage analysis) and
transparently offer them in continuous integration and deployment pipelines to
enable high-quality community contributions (cf. Section 2). By supporting mod-
ern technologies (such as the Java Platform Module System (JPMS) for building
custom application installers) and improving integrability (e.g., by switching to
the logging facade SLF4J and dropping dependencies with proprietary licenses),
LearnLib should become much more attractive for professional environments as
well.

On the social side, we further integrated with LearnLib’s hosting platform
GitHub. We replaced previous mailing lists with GitHub’s discussion feature5

which allows for a much more integrated communication about ideas, issues,
and pull requests. Judging from the activity, this change seems to have been
positively received by the community as well. Furthermore, we open-sourced the
LearnLib website6 to enable external contributors to improve and extend existing
documentation, e.g., by referencing their own related projects to help connecting
different research groups. Our efforts enable users to profit from LearnLib at
different levels:

Tool-Level There are numerous cases where LearnLib is simply used as a
tool [72, 68, 29, 31, 76, 10, 6, 5, 7, 12, 65, 22, 82, 39, 52, 66, 24, 18, 56, 55].
5 https://github.com/LearnLib/learnlib/discussions
6 https://github.com/LearnLib/learnlib.github.io
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Here, LearnLib provides a service that is either used qualitatively (simply to
infer a model) or quantitatively (to compare the performance of different learning
algorithms). In these situations, the researchers typically only need to provide an
interface to their systems under learning7 in order to execute their experiments.

Library-Level Other work presents tools that have been built using LearnLib
essentially as a library [13, 75, 79, 51, 81, 71, 54, 28, 30, 27, 77, 60, 69]. In
this case, LearnLib is used as a library on which the respective tools depend.
These situations show how the modularization, the APIs, and the deployment of
LearnLib aligns with modern software development.

Framework-Level Cooperation at this level profits most from LearnLib’s
flexible architecture. Typical here is the extension of LearnLib with custom
functionality [57, 23, 50, 17, 26] such as symbol filters or supporting conflicting
queries. A particularly fruitful example of this is RALib [19] which is a standalone
tool for active learning of register automata. RALib is based on LearnLib and
heavily extends its different components with custom learning algorithms and
equivalence algorithms (cf. Figure 1). Such extensions, in particular when they
are re-integrated again into LearnLib (e.g., [57]), motivate our efforts to increase
the flexibility of LearnLib’s architecture.

5 Conclusion & Future Work

We have highlighted the advancements of LearnLib over the past decade, aiming
to establish it as the central resource for (active) automata learning. Composi-
tionality and extensibility have been the driving forces behind its development,
as there cannot be a one-size-fits-all solution in automata learning. Instead, the
ability to easily create custom learning processes tailored to specific application
profiles is crucial for practical success. It allows researchers to easily benchmark
their new learning algorithms against the state of the art by simply replacing
components in established learning processes, while application developers can
seamlessly compose tailored learning processes to evaluate their suitability for
specific requirements. We have illustrated this flexibility by developing a learning
process for the life-long learning of procedural systems.

We are continuously working on integrating new technologies. For example,
LearnLib has already received initial support for passive automata learning
via algorithms such as RPNI [61] or OSTIA [62] (contributed by Aleksander
Mendoza-Drosik8). One of our next goals is to look at the insights gained by
RALib [19] to enhance LearnLib’s capability to handle data. In the long term,
we aim to establish a LearnLib-based benchmark suite as an industry standard
for evaluating and comparing active automata learning algorithms.

7 Sometimes, the definition of this interface is the actual research being conducted.
8 https://github.com/aleksander-mendoza
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LearnLib is open-source. We encourage users to replicate and experiment
with the concepts presented in this paper and are looking forward to future
collaborations which we see as key to the long-term success of LearnLib.

Disclosure of Interests Markus Frohme is funded by Deutsche Forschungs-
gemeinschaft (DFG), Grant 528775176. The authors are directly involved with
development and maintenance of the presented tool. The authors declare they
have no financial interests.
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