
Available

CAV
Evaluation

Artifact

Reusable

CAV
Evaluation

Artifact

LearnLib: 10 years later

Markus Frohme1(�) , Falk Howar1,2 , and Bernhard Steffen1

1 TU Dortmund University, Dortmund, Germany
<firstname>.<lastname>@cs.tu-dortmund.de

2 Fraunhofer ISST, Dortmund, Germany

Abstract. In 2015, LearnLib, the open-source framework for active au-
tomata learning, received the prestigious CAV artifact award. This paper
presents the advancements made since then, highlighting significant addi-
tions to LearnLib, including state-of-the-art algorithms, novel learning
paradigms, and increasingly expressive models. Our efforts to mature and
maintain LearnLib have resulted in its widespread use among researchers
and practitioners alike. A key factor in its success is the achieved com-
positionality which allows users to effortlessly construct thousands of
customized learning processes tailored to their specific requirements. This
paper illustrates these features through the development of a learning
process for the life-long learning of procedural systems. This development
can be easily replicated and modified using the latest public release of
LearnLib.

Keywords: (Active) Automata Learning · Monitoring · Refinement ·
Open-Source · Library · Java

1 Introduction

Active automata learning describes the process of inferring an automaton-based
model from a hardware or software system by means of actively querying it.
What originally started as a theoretical concept for language inference [9] has
in recent decades gained a lot of interest from practitioners due to the role of
automata learning as the key enabler of practical model-based quality assurance.
There exist several success stories that underline its practical relevance [67, 47, 3,
20, 2, 4, 72, 32, 64].

Tools are of paramount importance when applying these theoretical concepts
to practical scenarios. Unfortunately, by being mostly research-driven, many
tools are no longer developed or even maintained once the main researcher
or research group leaves the project. Specifically for active automata learning,
we have observed this trend with tools such as libALF [16] (last release in
2011), RALT [70] (never published, internal use at France Telecom until 2014),
AIDE [49] (development ceased in 2015), Sp2Learn [11] (development ceased
in 2016), Tomte [1] (latest release in 2016), SymbolicAutomata [25] (no major
contributions since 2019), or ROLL [53] (somewhat regular contributions, but
no stable releases). Currently, we are only aware of AALpy [59] that is being
actively developed and maintained.

https://doi.org/10.5281/zenodo.15212024
https://orcid.org/0000-0001-6520-2410
https://orcid.org/0000-0002-9524-4459
https://orcid.org/0000-0001-9619-1558


This paper highlights the significant advancements of LearnLib a decade after
receiving the CAV artifact award in 2015 [45]. These advancements include not
only new paradigms for addressing the challenges of practical automata learning
and the evolution of automata learning towards more expressive formalisms such
as procedural systems, but also enhanced compositionality. We demonstrate how
users can now easily construct thousands of customized learning processes tailored
to their specific needs. In particular, researchers can easily benchmark their new
learning algorithms against the state of the art by simply replacing components
in established learning processes, while application developers can seamlessly
compose tailored learning processes to evaluate their suitability for specific
requirements. This paper showcases this potential through the development of a
learning process for the life-long learning of procedural systems.

The open structure of LearnLib has inspired numerous researchers to con-
tribute by providing case studies and algorithms which can now be seamlessly
integrated as illustrated in this paper. We aim to further establish LearnLib as a
comprehensive resource for automata learning.

LearnLib is written in Java, open-source3, and released under the Apache 2.0
license4. It is deployed to Maven Central, the de-facto standard for various build
tools in the Java ecosystem, and therefore can be directly used in many projects.
Consequently, the developments presented in this paper can be easily replicated
and modified.

Outline We continue in Section 2 with an overview of the current features of
LearnLib and highlight the major additions of the last decade. Section 3 showcases
the flexibility of LearnLib to easily configure a requirements-based learning process.
In Section 4, we summarize our efforts to improve the development process of
LearnLib and the impact it had on the research community. Section 5 concludes
the paper and gives an outlook on the future of LearnLib.

2 New Features in LearnLib

Active automata learning usually operates within the minimally adequate teacher
framework as proposed by Angluin [9]. During the exploration phase, a learning
algorithm (or learner) queries the system under learning (SUL) for its behavior
through a membership oracle to construct a tentative hypothesis model of the SUL.
After hypothesis stabilization, an equivalence oracle then checks in the verification
phase whether the hypothesis model and the SUL are equivalent and, if not,
returns a counterexample (a witness for in-equivalence). This counterexample
is used by the learner to refine the current hypothesis model, which triggers a
subsequent exploration phase. The two phases alternate until the equivalence
oracle no longer finds any counterexamples. For details, see [74].

Figure 1 sketches the current features of LearnLib for the involved concepts
learning processes are composed of. For instantiating a learning process, the user
3 https://github.com/LearnLib/learnlib
4 https://www.apache.org/licenses/LICENSE-2.0

https://github.com/LearnLib/learnlib
https://www.apache.org/licenses/LICENSE-2.0


only needs to define the symbolic interactions with the system (Symbols) and
provide a means to access it (SUL). All remaining parts are provided by LearnLib
and can be combined depending on the requirements of the user. In the following,
we highlight the novel additions to LearnLib.

Active Learning Algorithms Experiments [43] show that one bottleneck
of active automata learning typically lies in the performance of the SUL for
answering queries. As a result, many learners aim at reducing the number of
queries that they pose and the length thereof. We have developed the concept of
lazy partition refinement [41] which distills the idea of the TTT algorithm [46] to
represent hypothesis states with a redundancy-free, prefix-closed set of access
sequence while simultaneously distinguishing between them with a redundancy-
free, suffix-closed set of discriminators. LearnLib provides two incarnations of
this concept in the form of the Lλ algorithm (based on the L∗ algorithm [9]) and
the TTTλ algorithm (based on the TTT algorithm [46]).

A different approach to pursue this goal concerns refining the way in which
learners communicate with the SUL. The ADT learner [33] and the L# learner [78]
utilize adaptive distinguishing sequences to separate between hypothesis states.
By adaptively deciding which inputs to query next, they can discriminate between
more states, thus reducing the number of queries needed. The implementation of
the L# algorithm was contributed by Ferreira et al. as part of their work in [27].

The amount of system inputs can easily cause performance problems, too. To
address this issue, we implemented the concept of automated alphabet abstraction
refinement (AAAR) [42]. AAAR introduces an orthogonal learning process on
the behavioral equivalence classes of the input symbols (as long as such a finite
partition exists), incorporating input symbols in the learning process only when
really needed. It is worth noting that AAAR is not a single algorithm but a
generic concept which can be combined with various of the existing (regular)
learning algorithms.

Finally, Bayram [14] extended some of the existing learning algorithms to
natively support inferring Moore machines [58]. Being able to record intermediate
state outputs can increase the expressiveness of membership queries, boosting
the performance of learning processes in case the SUL supports these semantics,
too.

Another challenge for practical automata learning is the question whether
the chosen formalism is expressive enough to capture the system properties of
interest. We extended the scope of LearnLib to support the active inference
of context-free (or procedural) systems. The notion of systems of procedural
automata (SPAs) [35], systems of behavioral automata (SBAs) [36], and systems
of procedural Mealy machines (SPMMs) [34] describe systems that are composed
of multiple regular procedures that can mutually call each other. Similar to
AAAR, this allows for a generic meta-learner that can be parameterized in the
concrete learner(s) used for the internal procedures. Furthermore, the existing
OP algorithm [40] and TTT algorithm [46] have been extended [44] to support
the inference of visibly push-down automata (VPAs) [8].



A
ctive Learning A

lgorithm
s

L*

R
egular

D
FA

M
ealy

M
oore

VPA

D
H

C

L #

KV

N
L*

O
P

TTT

Procedural

C
ontext-Free

SPA
SBA
SPM

M

D
FA

M
ealy

M
oore

VPA
D

FA
M

ealy
M

oore

M
ealy

M
ealy

N
FA

D
FA

M
ealy

L λ /
TTT

λ
D

FA
M

ealy

AD
T

M
ealy

Learning Process

AAAR

C
ounterexam

ple A
nalyzers

Lin.

Forw
ard

Lin.

Exp.
Exp.

Bin.
Bin.

Backw
ard

M
em

bership O
racles

O
racles

classic
adaptive
state-local

classic
adaptive
state-local

C
aches

classic
adaptive
state-local

Parallel
O

racles

D
rivers

M
appers

Statistics

Equivalence O
racles

W
-M

ethod
classic
random

ized

classic
random

ized
partial

W
-M

ethod

R
andom
W

alk

R
andom
W

ord

LTSM
in

Model-Based TestingBBC

 

Sym
bols

SU
L

F
ig.1.

A
n

overview
of

the
current

active
autom

ata
learning

features
of

L
earnL

ib.
G

ray
nodes

represent
features

from
[45]

and
colored

nodes
represent

new
features.B

lue
m

arks
learning-related

concepts,green
m

arks
equivalence

testing-related
concepts,and

orange
m

arks
m

em
bership

query-related
concepts.C

om
ponents

w
ith

bold
outlines

have
been

contributed
by

externalcom
m

unity
m

em
bers.



Equivalence Oracles Meijer and Pol [57] integrated the model checker LTSmin [48]
into LearnLib and therefore provided a means for black-box checking (BBC) [63].
Due to the clever use of LearnLib’s modular structure, the authors implement the
model checker as a special form of equivalence oracle which seamlessly integrates
into the existing hierarchy.

Smetsers et al. [73] discovered that adding fuzzying to methods from model-
based testing such as the (partial) W-method [21, 37] is able to boost the
performance of counterexample search. The implementations of the authors can
be used as drop-in replacements for the classic procedures.

Membership Oracles As an alternative to algorithmic properties for the
reduction of membership queries during learning, Geske [38] investigated the
concept of state-local alphabets which allow queries to be answered early if
non-available input symbols are encountered. This concept is implemented as an
independent query filter, making the approach compatible with various existing
types of membership oracles.

Another practical means to boost performance concerns the caching and paral-
lelization of queries. Vitorovic [80] introduced a new type of adaptive membership
queries which model a symbol-by-symbol style communication, contrasting the
typical preset queries. His work includes the respective caches and parallel oracles
which are implemented in a generic fashion so that they can be shared by adaptive
algorithms such as ADT and L#.

Performance Besides algorithmic properties, implementation details such as
architectural design decisions or the chosen programming language may also
impact (learning) performance. Typically, comparisons of tools (e.g., in [59])
are not conclusive and often depend on the considered use-cases. As a result,
we focused more on advancing conceptual features. For example, we improved
existing learner implementations by optimizing their batching of queries in order
to support a higher degree of parallelization if applicable and we added support
for suspending and resuming learning processes to allow for re-using intermediate
results in more sophisticated learning setups.

3 Construction of Custom Learning Processes

In this section we illustrate how LearnLib supports the construction of learning
processes tailored to specific requirements profiles. The example is included in
the artifact and can be used as the basis for experimentation. Additionally, the
entire learning process can also be easily implemented with the latest public
release of LearnLib (version 0.18.0).

3.1 Requirements

Let us assume that we are interested in controlling a procedural system (systems
that may comprise recursion) in a monitoring-based fashion to implement the
concept of life-long learning [15]. This implies that



– we need a procedural learner and
– monitoring requires us to support

• prefix-closed semantics as the monitor, ideally, records the subsequent
reactions to individual inputs, and

• extremely long counterexamples since the monitor may detect issues only
after days worth of operation.

Immediately, this makes certain options preferable over others.

➊ For modelling prefix-closed procedural systems either SBAs or SPMMs can
be used. Since our monitor records individual outputs, we choose SPMMs.

➋ Specific to procedural learners is the choice of a local learner for inferring
the involved procedures. We choose the TTT algorithm for this task as
it is specifically designed to handle the long counterexamples provided by
monitoring.

Another important characteristics of the chosen example is that it comprises two
phases:

– a phase for inferring a model for constructing the initial monitor, and
– the monitoring-based life-long learning phase.

In this paper, we focus on the first phase which is interesting because it comes
with quite some potential for optimization: we want to speed up the learning
process.

➌ Since we can easily spawn multiple local instances of our application, we
want to answer queries in parallel.

➍ To reduce the load on our application, we also want to remove duplicate
queries via the use of caching.

➎ Furthermore, we have specified a set of critical runs of our system that we
want to check during learning to not deploy a knowingly faulty application.

In contrast, the monitoring phase is a purely technical issue. One only has
to specify how the monitor can access the current hypothesis model and how
monitored traces can be used to refine the hypothesis model.

3.2 Implementation

Listing 1.1 sketches how these requirements can be implemented with LearnLib.

Membership Oracle After the initial setup of symbolic interactions and
instantiating our local testing instances, we begin with constructing the main
membership oracle that is going to be used by the learner (for exploration) and
the equivalence oracle (for verification). LearnLib’s design of membership oracles
innately supports the processing of query batches. Via convenient factory methods,
LearnLib provides special parallel oracles that split these batches according to
a selectable strategy and distribute the (sub-) batches to the provided oracle



1 // setup
2 var alphabet = ...
3 var instance1 = ...
4 var instance2 = ...
5

6 // membership oracles
7 var parallel = ParallelOracleBuilders.newStaticParallelOracle(instance1,

instance2).create(); ➌

8 var mqo = MealyCaches.createCache(alphabet, parallel); ➍

9

10 // equivalence oracles
11 var sample = new SampleSetEQOracle<Input,

Word<Output>>().addAll(requirements); ➎

12 var wMethod = new WMethodEQOracle<>(mqo);
13 var eqo = new EQOracleChain<>(sample, wMethod);
14

15 // learner
16 var learner = new SPMMLearner<>(alphabet, Output.ERROR, mqo,

TTTAdapterMealy::new ➋ ); ➊

17

18 // learning loop
19 learner.startLearning();
20 var hyp = learner.getHypothesisModel();
21 DefaultQuery<Input, Word<Output>> cex;
22 while ((cex = eqo.findCounterExample(hyp, alphabet)) != null) {
23 learner.refineHypothesis(cex);
24 hyp = learner.getHypothesisModel();
25 }
26

27 // continue to work with the model
28 startMonitor(learner);

Listing 1.1. Construction of the discussed learning process. Encircled numbers reference
the respective requirements of the example.

instances. Yet, due to clever use of abstraction, these oracles appear as regular
membership oracles to the outside. As a result, we can use the same instance as
a delegate for our query cache. Note that we simply re-use a Mealy cache for this
purpose because both formalisms are transition output systems. Using a simple
decorator pattern, users are able to construct powerful query chains which can
easily integrate custom extensions such as query filters (e.g., to only focus on a
specific part of the system) or counters (e.g., to measure the workload on the
SUL).

Equivalence Oracle In a similar fashion, equivalence oracles can be composed.
LearnLib provides out-of-the-box implementations for many of the conventional
equivalence tests. The power comes from being able to combine them. In our
example, we build an equivalence oracle chain which sequentially asks each of its



inner oracles for counterexamples. First, we use a sampling oracle that simply
checks the traces from our previously prepared requirements. Once these traces no
longer expose any in-equivalences, we use the W-method for a more methodical
test-case generation. Due to the oracle chain, we can abstract all these steps (and
potentially more) behind a simple object.

Learner Finally, the learner is set up. As discussed in our requirements, specific
to procedural systems is the concept of a meta-learner which can be parameterized
in its sub-learner(s). Here, we instantiate the SPMM learner and select the TTT
algorithm as its procedural learner. The SPMM learner only requires a learner
for (regular) Mealy machines, so many other algorithms in LearnLib (or custom
ones) can be used, too.

It should be noted that learners can typically be configured with specific
counterexample analysis strategies. In our case, however, we can omit this step
for two reasons.

– Because SPMMs are context-free, the prefix-closed semantics guarantees
that no analysis is required to identify the procedure call responsible for an
error, because it is always the same as the procedure call where the error is
observed.

– LearnLib uses convention over configuration when reasonable. For the pro-
cedural learner, we consider the default binary search-based analysis as
adequate.

For other settings, like SPAs or SBAs, LearnLib provides 36 options alone for the
(combined) choices of global and procedural counterexample analysis algorithms.

Learning Loop The actual learning process is a simple while-loop that alter-
nates between the exploration and verification phase (cf. Section 2). The loop
terminates once the equivalence oracle is no longer able to find counterexamples.

Monitoring The learner and the equivalence oracle only communicate via
counterexamples. As a result, the very same learner can simply receive counterex-
amples from the monitor and continue its original learning process. In particular,
we do not need to reset any progress but can seamlessly integrate the existing
components in the new context. Due to space reasons, we skip the details of the
monitor execution. However, from the learning loop, it should be clear how the
monitor can access the current hypothesis model and how monitored traces can
be used to refine the hypothesis model. The involved workflow is identical to the
presented one.

3.3 Takeaways

With LearnLib it is possible to construct complex and intricate learning setups by
composing them from simple and easy-to-understand components. The driving



forces behind this ability are the rigorous notion of abstraction and composition.
For users, this manifests in two ways.

First, LearnLib provides the building blocks for highly specialized learning
setups, all while maintaining compatibility between the involved structures.
For example, had we chosen the acceptor-based SBA formalism instead of the
transducer-based SPMM formalism, only the output type would have changed
from Word<Output> to Boolean. For the rest, the same notion of composition for
membership oracles, equivalence oracles, and (procedural) learners would have
been available.

Second, LearnLib establishes functional contracts which allow for highly
extensible implementations. In Listing 1.1, each concept ((procedural) learning
algorithm, membership oracle, equivalence oracle, etc.) could have been replaced
with a custom implementation without impeding the overall workflow.

From a practitioner’s perspective this allows for easy building of use-case
specific adaptations and optimizations to improve the overall experience when
applying automata learning in practice. From a researcher’s perspective, LearnLib
provides a rich framework in which novel concepts can be implemented and directly
evaluated in a multitude of different contexts.

4 Impact on the Community

Over the years, we continuously improved the experience for potential users. On
the technical side, we enhanced the build process of LearnLib to include several
industry standards (such as static code analysis and test coverage analysis) and
transparently offer them in continuous integration and deployment pipelines to
enable high-quality community contributions (cf. Section 2). By supporting mod-
ern technologies (such as the Java Platform Module System (JPMS) for building
custom application installers) and improving integrability (e.g., by switching to
the logging facade SLF4J and dropping dependencies with proprietary licenses),
LearnLib should become much more attractive for professional environments as
well.

On the social side, we further integrated with LearnLib’s hosting platform
GitHub. We replaced previous mailing lists with GitHub’s discussion feature5

which allows for a much more integrated communication about ideas, issues,
and pull requests. Judging from the activity, this change seems to have been
positively received by the community as well. Furthermore, we open-sourced the
LearnLib website6 to enable external contributors to improve and extend existing
documentation, e.g., by referencing their own related projects to help connecting
different research groups. Our efforts enable users to profit from LearnLib at
different levels:

Tool-Level There are numerous cases where LearnLib is simply used as a
tool [72, 68, 29, 31, 76, 10, 6, 5, 7, 12, 65, 22, 82, 39, 52, 66, 24, 18, 56, 55].
5 https://github.com/LearnLib/learnlib/discussions
6 https://github.com/LearnLib/learnlib.github.io

https://github.com/LearnLib/learnlib/discussions
https://github.com/LearnLib/learnlib.github.io


Here, LearnLib provides a service that is either used qualitatively (simply to
infer a model) or quantitatively (to compare the performance of different learning
algorithms). In these situations, the researchers typically only need to provide an
interface to their systems under learning7 in order to execute their experiments.

Library-Level Other work presents tools that have been built using LearnLib
essentially as a library [13, 75, 79, 51, 81, 71, 54, 28, 30, 27, 77, 60, 69]. In
this case, LearnLib is used as a library on which the respective tools depend.
These situations show how the modularization, the APIs, and the deployment of
LearnLib aligns with modern software development.

Framework-Level Cooperation at this level profits most from LearnLib’s
flexible architecture. Typical here is the extension of LearnLib with custom
functionality [57, 23, 50, 17, 26] such as symbol filters or supporting conflicting
queries. A particularly fruitful example of this is RALib [19] which is a standalone
tool for active learning of register automata. RALib is based on LearnLib and
heavily extends its different components with custom learning algorithms and
equivalence algorithms (cf. Figure 1). Such extensions, in particular when they
are re-integrated again into LearnLib (e.g., [57]), motivate our efforts to increase
the flexibility of LearnLib’s architecture.

5 Conclusion & Future Work

We have highlighted the advancements of LearnLib over the past decade, aiming
to establish it as the central resource for (active) automata learning. Composi-
tionality and extensibility have been the driving forces behind its development,
as there cannot be a one-size-fits-all solution in automata learning. Instead, the
ability to easily create custom learning processes tailored to specific application
profiles is crucial for practical success. It allows researchers to easily benchmark
their new learning algorithms against the state of the art by simply replacing
components in established learning processes, while application developers can
seamlessly compose tailored learning processes to evaluate their suitability for
specific requirements. We have illustrated this flexibility by developing a learning
process for the life-long learning of procedural systems.

We are continuously working on integrating new technologies. For example,
LearnLib has already received initial support for passive automata learning
via algorithms such as RPNI [61] or OSTIA [62] (contributed by Aleksander
Mendoza-Drosik8). One of our next goals is to look at the insights gained by
RALib [19] to enhance LearnLib’s capability to handle data. In the long term,
we aim to establish a LearnLib-based benchmark suite as an industry standard
for evaluating and comparing active automata learning algorithms.

7 Sometimes, the definition of this interface is the actual research being conducted.
8 https://github.com/aleksander-mendoza

https://github.com/aleksander-mendoza


LearnLib is open-source. We encourage users to replicate and experiment
with the concepts presented in this paper and are looking forward to future
collaborations which we see as key to the long-term success of LearnLib.

Disclosure of Interests Markus Frohme is funded by Deutsche Forschungs-
gemeinschaft (DFG), Grant 528775176. The authors are directly involved with
development and maintenance of the presented tool. The authors declare they
have no financial interests.

References

[1] Fides Aarts. “Tomte : bridging the gap between active learning and real-
world systems”. PhD thesis. Radboud Universiteit Nijmegen, Netherlands,
Oct. 2014. doi: 2066/130428.

[2] Fides Aarts, Joeri de Ruiter, and Erik Poll. “Formal Models of Bank
Cards for Free”. In: Sixth IEEE International Conference on Software
Testing, Verification and Validation, ICST 2013 Workshops Proceedings,
Luxembourg, Luxembourg, March 18-22, 2013. IEEE Computer Society,
2013, pp. 461–468. doi: 10.1109/ICSTW.2013.60.

[3] Fides Aarts, Julien Schmaltz, and Frits W. Vaandrager. “Inference and
Abstraction of the Biometric Passport”. In: Leveraging Applications of
Formal Methods, Verification, and Validation - 4th International Symposium
on Leveraging Applications, ISoLA 2010, Heraklion, Crete, Greece, October
18-21, 2010, Proceedings, Part I. Ed. by Tiziana Margaria and Bernhard
Steffen. Vol. 6415. Lecture Notes in Computer Science. Springer, 2010,
pp. 673–686. doi: 10.1007/978-3-642-16558-0_54.

[4] Fides Aarts et al. “Generating models of infinite-state communication
protocols using regular inference with abstraction”. In: Formal Methods
Syst. Des. 46.1 (2015), pp. 1–41. doi: 10.1007/s10703-014-0216-x.

[5] Bernhard K. Aichernig, Christian Burghard, and Robert Korosec. “Learning-
Based Testing of an Industrial Measurement Device”. In: NASA Formal
Methods - 11th International Symposium, NFM 2019, Houston, TX, USA,
May 7-9, 2019, Proceedings. Ed. by Julia M. Badger and Kristin Yvonne
Rozier. Vol. 11460. Lecture Notes in Computer Science. Springer, 2019,
pp. 1–18. doi: 10.1007/978-3-030-20652-9_1.

[6] Bernhard K. Aichernig and Martin Tappler. “Efficient Active Automata
Learning via Mutation Testing”. In: J. Autom. Reason. 63.4 (2019), pp. 1103–
1134. doi: 10.1007/S10817-018-9486-0.

[7] Bernhard K. Aichernig et al. “Learning a Behavior Model of Hybrid Systems
Through Combining Model-Based Testing and Machine Learning”. In:
Testing Software and Systems - 31st IFIP WG 6.1 International Conference,
ICTSS 2019, Paris, France, October 15-17, 2019, Proceedings. Ed. by
Christophe Gaston, Nikolai Kosmatov, and Pascale Le Gall. Vol. 11812.
Lecture Notes in Computer Science. Springer, 2019, pp. 3–21. doi: 10.
1007/978-3-030-31280-0_1.

https://doi.org/2066/130428
https://doi.org/10.1109/ICSTW.2013.60
https://doi.org/10.1007/978-3-642-16558-0_54
https://doi.org/10.1007/s10703-014-0216-x
https://doi.org/10.1007/978-3-030-20652-9_1
https://doi.org/10.1007/S10817-018-9486-0
https://doi.org/10.1007/978-3-030-31280-0_1
https://doi.org/10.1007/978-3-030-31280-0_1


[8] Rajeev Alur and P. Madhusudan. “Visibly pushdown languages”. In: Pro-
ceedings of the 36th Annual ACM Symposium on Theory of Computing,
Chicago, IL, USA, June 13-16, 2004. Ed. by László Babai. ACM, 2004,
pp. 202–211. doi: 10.1145/1007352.1007390.

[9] Dana Angluin. “Learning Regular Sets from Queries and Counterexamples”.
In: Information and Computation 75.2 (1987), pp. 87–106. doi: 10.1016/
0890-5401(87)90052-6.

[10] Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. “Regular Expres-
sion Learning with Evolutionary Testing and Repair”. In: Testing Software
and Systems - 31st IFIP WG 6.1 International Conference, ICTSS 2019,
Paris, France, October 15-17, 2019, Proceedings. Ed. by Christophe Gas-
ton, Nikolai Kosmatov, and Pascale Le Gall. Vol. 11812. Lecture Notes in
Computer Science. Springer, 2019, pp. 22–40. doi: 10.1007/978-3-030-
31280-0_2.

[11] Denis Arrivault et al. “Sp2Learn: A Toolbox for the Spectral Learning of
Weighted Automata”. In: Proceedings of the 13th International Conference
on Grammatical Inference, ICGI 2016, Delft, The Netherlands, October 5-7,
2016. Ed. by Sicco Verwer, Menno van Zaanen, and Rick Smetsers. Vol. 57.
JMLR Workshop and Conference Proceedings. JMLR.org, 2016, pp. 105–
119. url: http://proceedings.mlr.press/v57/arrivault16.html.

[12] Kousar Aslam et al. “Interface protocol inference to aid understanding
legacy software components”. In: Softw. Syst. Model. 19.6 (2020), pp. 1519–
1540. doi: 10.1007/S10270-020-00809-2.

[13] Alexander Bainczyk et al. “ALEX: Mixed-Mode Learning of Web Applica-
tions at Ease”. In: Leveraging Applications of Formal Methods, Verification
and Validation: Discussion, Dissemination, Applications - 7th Interna-
tional Symposium, ISoLA 2016, Imperial, Corfu, Greece, October 10-14,
2016, Proceedings, Part II. Ed. by Tiziana Margaria and Bernhard Steffen.
Vol. 9953. Lecture Notes in Computer Science. 2016, pp. 655–671. doi:
10.1007/978-3-319-47169-3_51.

[14] Mohamad Bayram. “Moore-basierte Anfragen zur Query-Optimierung beim
aktiven Automatenlernen”. In german. Bachelor’s thesis. TU Dortmund
University, 2022.

[15] Antonia Bertolino et al. “Never-stop Learning: Continuous Validation of
Learned Models for Evolving Systems through Monitoring”. In: ERCIM
News 2012.88 (2012). url: http://ercim-news.ercim.eu/en88/special
/never-stop-learning-continuous-validation-of-learned-models-
for-evolving-systems-through-monitoring.

[16] Benedikt Bollig et al. “libalf: The Automata Learning Framework”. In:
Computer Aided Verification, 22nd International Conference, CAV 2010,
Edinburgh, UK, July 15-19, 2010. Proceedings. Ed. by Tayssir Touili, Byron
Cook, and Paul B. Jackson. Vol. 6174. Lecture Notes in Computer Science.
Springer, 2010, pp. 360–364. doi: 10.1007/978-3-642-14295-6_32.

[17] Véronique Bruyère, Guillermo A. Pérez, and Gaëtan Staquet. “Learning
Realtime One-Counter Automata”. In: Tools and Algorithms for the Con-

https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1007/978-3-030-31280-0_2
https://doi.org/10.1007/978-3-030-31280-0_2
http://proceedings.mlr.press/v57/arrivault16.html
https://doi.org/10.1007/S10270-020-00809-2
https://doi.org/10.1007/978-3-319-47169-3_51
http://ercim-news.ercim.eu/en88/special/never-stop-learning-continuous-validation-of-learned-models-for-evolving-systems-through-monitoring
http://ercim-news.ercim.eu/en88/special/never-stop-learning-continuous-validation-of-learned-models-for-evolving-systems-through-monitoring
http://ercim-news.ercim.eu/en88/special/never-stop-learning-continuous-validation-of-learned-models-for-evolving-systems-through-monitoring
https://doi.org/10.1007/978-3-642-14295-6_32


struction and Analysis of Systems - 28th International Conference, TACAS
2022, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022,
Proceedings, Part I. Ed. by Dana Fisman and Grigore Rosu. Vol. 13243.
Lecture Notes in Computer Science. Springer, 2022, pp. 244–262. doi:
10.1007/978-3-030-99524-9_13.

[18] Véronique Bruyère, Guillermo A. Pérez, and Gaëtan Staquet. “Validating
Streaming JSON Documents with Learned VPAs”. In: Tools and Algorithms
for the Construction and Analysis of Systems - 29th International Confer-
ence, TACAS 2023, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2022, Paris, France, April 22-27,
2023, Proceedings, Part I. Ed. by Sriram Sankaranarayanan and Natasha
Sharygina. Vol. 13993. Lecture Notes in Computer Science. Springer, 2023,
pp. 271–289. doi: 10.1007/978-3-031-30823-9_14.

[19] Sofia Cassel, Falk Howar, and Bengt Jonsson. “RALib: A LearnLib extension
for inferring EFSMs”. In: DIFTS 5 (2015).

[20] Chia Yuan Cho et al. “Inference and analysis of formal models of botnet com-
mand and control protocols”. In: Proceedings of the 17th ACM Conference on
Computer and Communications Security, CCS 2010, Chicago, Illinois, USA,
October 4-8, 2010. Ed. by Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly
Shmatikov. ACM, 2010, pp. 426–439. doi: 10.1145/1866307.1866355.

[21] Tsun S. Chow. “Testing Software Design Modeled by Finite-State Machines”.
In: IEEE Transactions on Software Engineering 4.3 (1978), pp. 178–187.
doi: 10.1109/TSE.1978.231496.

[22] Carlos Diego Nascimento Damasceno, Mohammad Reza Mousavi, and
Adenilso da Silva Simão. “Learning by sampling: learning behavioral family
models from software product lines”. In: Empir. Softw. Eng. 26.1 (2021),
p. 4. doi: 10.1007/S10664-020-09912-W.

[23] Carlos Diego Nascimento Damasceno, Mohammad Reza Mousavi, and
Adenilso da Silva Simão. “Learning to Reuse: Adaptive Model Learning
for Evolving Systems”. In: Integrated Formal Methods - 15th International
Conference, IFM 2019, Bergen, Norway, December 2-6, 2019, Proceedings.
Ed. by Wolfgang Ahrendt and Silvia Lizeth Tapia Tarifa. Vol. 11918.
Lecture Notes in Computer Science. Springer, 2019, pp. 138–156. doi:
10.1007/978-3-030-34968-4_8.

[24] Simon Dierl et al. “Learning Symbolic Timed Models from Concrete Timed
Data”. In: NASA Formal Methods - 15th International Symposium, NFM
2023, Houston, TX, USA, May 16-18, 2023, Proceedings. Ed. by Kristin
Yvonne Rozier and Swarat Chaudhuri. Vol. 13903. Lecture Notes in Com-
puter Science. Springer, 2023, pp. 104–121. doi: 10.1007/978-3-031-
33170-1_7.

[25] Samuel Drews and Loris D’Antoni. “Learning Symbolic Automata”. In:
Tools and Algorithms for the Construction and Analysis of Systems - 23rd
International Conference, TACAS 2017, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala,

https://doi.org/10.1007/978-3-030-99524-9_13
https://doi.org/10.1007/978-3-031-30823-9_14
https://doi.org/10.1145/1866307.1866355
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1007/S10664-020-09912-W
https://doi.org/10.1007/978-3-030-34968-4_8
https://doi.org/10.1007/978-3-031-33170-1_7
https://doi.org/10.1007/978-3-031-33170-1_7


Sweden, April 22-29, 2017, Proceedings, Part I. Ed. by Axel Legay and
Tiziana Margaria. Vol. 10205. Lecture Notes in Computer Science. 2017,
pp. 173–189. doi: 10.1007/978-3-662-54577-5_10.

[26] Tiago Ferreira, Gerco van Heerdt, and Alexandra Silva. “Tree-Based Adap-
tive Model Learning”. In: A Journey from Process Algebra via Timed
Automata to Model Learning - Essays Dedicated to Frits Vaandrager on
the Occasion of His 60th Birthday. Ed. by Nils Jansen, Mariëlle Stoelinga,
and Petra van den Bos. Vol. 13560. Lecture Notes in Computer Science.
Springer, 2022, pp. 164–179. doi: 10.1007/978-3-031-15629-8_10.

[27] Tiago Ferreira et al. “Conflict-Aware Active Automata Learning”. In: Pro-
ceedings of the Fourteenth International Symposium on Games, Automata,
Logics, and Formal Verification, GandALF 2023, Udine, Italy, 18-20th
September 2023. Ed. by Antonis Achilleos and Dario Della Monica. Vol. 390.
EPTCS. 2023, pp. 150–167. doi: 10.4204/EPTCS.390.10.

[28] Tiago Ferreira et al. “Prognosis: closed-box analysis of network protocol
implementations”. In: ACM SIGCOMM 2021 Conference, Virtual Event,
USA, August 23-27, 2021. Ed. by Fernando A. Kuipers and Matthew C.
Caesar. ACM, 2021, pp. 762–774. doi: 10.1145/3452296.3472938.

[29] Paul Fiterau-Brostean, Ramon Janssen, and Frits W. Vaandrager. “Combin-
ing Model Learning and Model Checking to Analyze TCP Implementations”.
In: Computer Aided Verification - 28th International Conference, CAV
2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II. Ed. by
Swarat Chaudhuri and Azadeh Farzan. Vol. 9780. Lecture Notes in Com-
puter Science. Springer, 2016, pp. 454–471. doi: 10.1007/978-3-319-
41540-6_25.

[30] Paul Fiterau-Brostean et al. “DTLS-Fuzzer: A DTLS Protocol State Fuzzer”.
In: 15th IEEE Conference on Software Testing, Verification and Validation,
ICST 2022, Valencia, Spain, April 4-14, 2022. IEEE, 2022, pp. 456–458.
doi: 10.1109/ICST53961.2022.00051.

[31] Paul Fiterau-Brostean et al. “Model learning and model checking of SSH
implementations”. In: Proceedings of the 24th ACM SIGSOFT International
SPIN Symposium on Model Checking of Software, Santa Barbara, CA, USA,
July 10-14, 2017. Ed. by Hakan Erdogmus and Klaus Havelund. ACM,
2017, pp. 142–151. doi: 10.1145/3092282.3092289.

[32] Paul Fiterău-Broştean and Falk Howar. “Learning-Based Testing the Sliding
Window Behavior of TCP Implementations”. In: Critical Systems: Formal
Methods and Automated Verification - Joint 22nd International Workshop
on Formal Methods for Industrial Critical Systems - and - 17th International
Workshop on Automated Verification of Critical Systems, FMICS-AVoCS
2017, Turin, Italy, September 18-20, 2017, Proceedings. Ed. by Laure
Petrucci, Cristina Seceleanu, and Ana Cavalcanti. Vol. 10471. Lecture Notes
in Computer Science. Springer, 2017, pp. 185–200. doi: 10.1007/978-3-
319-67113-0_12.

[33] Markus Frohme. “Active Automata Learning with Adaptive Distinguishing
Sequences”. In: CoRR abs/1902.01139 (2019). arXiv: 1902.01139.

https://doi.org/10.1007/978-3-662-54577-5_10
https://doi.org/10.1007/978-3-031-15629-8_10
https://doi.org/10.4204/EPTCS.390.10
https://doi.org/10.1145/3452296.3472938
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1109/ICST53961.2022.00051
https://doi.org/10.1145/3092282.3092289
https://doi.org/10.1007/978-3-319-67113-0_12
https://doi.org/10.1007/978-3-319-67113-0_12
https://arxiv.org/abs/1902.01139


[34] Markus Frohme. “Model-based quality assurance of intrumented context-
free systems”. PhD thesis. Technical University of Dortmund, Germany,
2023. doi: 10.17877/DE290R-24032.

[35] Markus Frohme and Bernhard Steffen. “Compositional learning of mutually
recursive procedural systems”. In: Int. J. Softw. Tools Technol. Transf. 23.4
(2021), pp. 521–543. doi: 10.1007/S10009-021-00634-Y.

[36] Markus Frohme and Bernhard Steffen. “From Languages to Behaviors
and Back”. In: A Journey from Process Algebra via Timed Automata to
Model Learning - Essays Dedicated to Frits Vaandrager on the Occasion
of His 60th Birthday. Ed. by Nils Jansen, Mariëlle Stoelinga, and Petra
van den Bos. Vol. 13560. Lecture Notes in Computer Science. Springer,
2022, pp. 180–200. doi: 10.1007/978-3-031-15629-8_11.

[37] Susumu Fujiwara et al. “Test Selection Based on Finite State Models”. In:
IEEE Transactions on Software Engineering 17.6 (1991), pp. 591–603. doi:
10.1109/32.87284.

[38] Maren Geske. “Implementation and performance evaluation of an active
learning algorithm for visible state-local alphabets”. Master’s thesis. TU
Dortmund University, 2018.

[39] Dennis Hendriks and Kousar Aslam. “A Systematic Approach for Interfacing
Component-Based Software with an Active Automata Learning Tool”. In:
Leveraging Applications of Formal Methods, Verification and Validation.
Software Engineering - 11th International Symposium, ISoLA 2022, Rhodes,
Greece, October 22-30, 2022, Proceedings, Part II. Ed. by Tiziana Margaria
and Bernhard Steffen. Vol. 13702. Lecture Notes in Computer Science.
Springer, 2022, pp. 216–236. doi: 10.1007/978-3-031-19756-7_13.

[40] Falk Howar. “Active Learning of Interface Programs”. PhD thesis. TU
Dortmund University, 2012. doi: 10.17877/DE290R-4817.

[41] Falk Howar and Bernhard Steffen. “Active Automata Learning as Black-
Box Search and Lazy Partition Refinement”. In: A Journey from Process
Algebra via Timed Automata to Model Learning - Essays Dedicated to Frits
Vaandrager on the Occasion of His 60th Birthday. Ed. by Nils Jansen,
Mariëlle Stoelinga, and Petra van den Bos. Vol. 13560. Lecture Notes in
Computer Science. Springer, 2022, pp. 321–338. doi: 10.1007/978-3-031-
15629-8_17.

[42] Falk Howar, Bernhard Steffen, and Maik Merten. “Automata Learning
with Automated Alphabet Abstraction Refinement”. In: Verification, Model
Checking, and Abstract Interpretation - 12th International Conference,
VMCAI 2011, Austin, TX, USA, January 23-25, 2011. Proceedings. Ed. by
Ranjit Jhala and David A. Schmidt. Vol. 6538. Lecture Notes in Computer
Science. Springer, 2011, pp. 263–277. doi: 10.1007/978-3-642-18275-
4_19.

[43] Falk Howar et al. “The Teachers’ Crowd: The Impact of Distributed Oracles
on Active Automata Learning”. In: Leveraging Applications of Formal
Methods, Verification, and Validation - International Workshops, SARS
2011 and MLSC 2011, Held Under the Auspices of ISoLA 2011 in Vienna,

https://doi.org/10.17877/DE290R-24032
https://doi.org/10.1007/S10009-021-00634-Y
https://doi.org/10.1007/978-3-031-15629-8_11
https://doi.org/10.1109/32.87284
https://doi.org/10.1007/978-3-031-19756-7_13
https://doi.org/10.17877/DE290R-4817
https://doi.org/10.1007/978-3-031-15629-8_17
https://doi.org/10.1007/978-3-031-15629-8_17
https://doi.org/10.1007/978-3-642-18275-4_19
https://doi.org/10.1007/978-3-642-18275-4_19


Austria, October 17-18, 2011. Revised Selected Papers. Ed. by Reiner Hähnle
et al. Vol. 336. Communications in Computer and Information Science.
Springer, 2011, pp. 232–247. doi: 10.1007/978-3-642-34781-8_18.

[44] Malte Isberner. “Foundations of active automata learning: an algorithmic
perspective”. PhD thesis. Technical University Dortmund, Germany, 2015.
url: https://hdl.handle.net/2003/34282.

[45] Malte Isberner, Falk Howar, and Bernhard Steffen. “The Open-Source Learn-
Lib - A Framework for Active Automata Learning”. In: Computer Aided
Verification - 27th International Conference, CAV 2015, San Francisco,
CA, USA, July 18-24, 2015, Proceedings, Part I. Ed. by Daniel Kroening
and Corina S. Pasareanu. Vol. 9206. Lecture Notes in Computer Science.
Springer, 2015, pp. 487–495. doi: 10.1007/978-3-319-21690-4_32.

[46] Malte Isberner, Falk Howar, and Bernhard Steffen. “The TTT Algorithm:
A Redundancy-Free Approach to Active Automata Learning”. In: Runtime
Verification - 5th International Conference, RV 2014, Toronto, ON, Canada,
September 22-25, 2014. Proceedings. Ed. by Borzoo Bonakdarpour and
Scott A. Smolka. Vol. 8734. Lecture Notes in Computer Science. Springer,
2014, pp. 307–322. doi: 10.1007/978-3-319-11164-3_26.

[47] Valérie Issarny et al. “CONNECT Challenges: Towards Emergent Connec-
tors for Eternal Networked Systems”. In: 14th IEEE International Con-
ference on Engineering of Complex Computer Systems, ICECCS 2009,
Potsdam, Germany, 2-4 June 2009. IEEE Computer Society, 2009, pp. 154–
161. doi: 10.1109/ICECCS.2009.44.

[48] Gijs Kant et al. “LTSmin: High-Performance Language-Independent Model
Checking”. In: Tools and Algorithms for the Construction and Analysis of
Systems - 21st International Conference, TACAS 2015, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS
2015, London, UK, April 11-18, 2015. Proceedings. Ed. by Christel Baier
and Cesare Tinelli. Vol. 9035. Lecture Notes in Computer Science. Springer,
2015, pp. 692–707. doi: 10.1007/978-3-662-46681-0_61.

[49] Ali Khalili and Armando Tacchella. “Learning Nondeterministic Mealy
Machines”. In: Proceedings of the 12th International Conference on Gram-
matical Inference, ICGI 2014, Kyoto, Japan, September 17-19, 2014. Ed. by
Alexander Clark, Makoto Kanazawa, and Ryo Yoshinaka. Vol. 34. JMLR
Workshop and Conference Proceedings. JMLR.org, 2014, pp. 109–123. url:
http://proceedings.mlr.press/v34/khalili14a.html.

[50] Paul Kogel, Verena Klös, and Sabine Glesner. “TTT/ik: Learning Accurate
Mealy Automata Efficiently with an Imprecise Symbol Filter”. In: Formal
Methods and Software Engineering - 23rd International Conference on
Formal Engineering Methods, ICFEM 2022, Madrid, Spain, October 24-
27, 2022, Proceedings. Ed. by Adrián Riesco and Min Zhang. Vol. 13478.
Lecture Notes in Computer Science. Springer, 2022, pp. 227–243. doi:
10.1007/978-3-031-17244-1_14.

[51] Martin Kölbl, Stefan Leue, and Thomas Wies. “TarTar: A Timed Au-
tomata Repair Tool”. In: Computer Aided Verification - 32nd International

https://doi.org/10.1007/978-3-642-34781-8_18
https://hdl.handle.net/2003/34282
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1109/ICECCS.2009.44
https://doi.org/10.1007/978-3-662-46681-0_61
http://proceedings.mlr.press/v34/khalili14a.html
https://doi.org/10.1007/978-3-031-17244-1_14


Conference, CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Pro-
ceedings, Part I. Ed. by Shuvendu K. Lahiri and Chao Wang. Vol. 12224.
Lecture Notes in Computer Science. Springer, 2020, pp. 529–540. doi:
10.1007/978-3-030-53288-8_25.

[52] Eric Lesiuta, Victor Bandur, and Mark Lawford. “SLIME: State Learning
in the Middle of Everything for Tool-Assisted Vulnerability Detection”. In:
Computer Security. ESORICS 2022 International Workshops - CyberICPS
2022, SECPRE 2022, SPOSE 2022, CPS4CIP 2022, CDT&SECOMANE
2022, EIS 2022, and SecAssure 2022, Copenhagen, Denmark, September
26-30, 2022, Revised Selected Papers. Ed. by Sokratis K. Katsikas et al.
Vol. 13785. Lecture Notes in Computer Science. Springer, 2022, pp. 686–704.
doi: 10.1007/978-3-031-25460-4_39.

[53] Yong Li et al. “A Novel Learning Algorithm for Büchi Automata Based
on Family of DFAs and Classification Trees”. In: Tools and Algorithms for
the Construction and Analysis of Systems - 23rd International Conference,
TACAS 2017, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,
Proceedings, Part I. Ed. by Axel Legay and Tiziana Margaria. Vol. 10205.
Lecture Notes in Computer Science. 2017, pp. 208–226. doi: 10.1007/978-
3-662-54577-5_12.

[54] Tiziana Margaria and Alexander Schieweck. “Towards Engineering Digital
Twins by Active Behaviour Mining”. In: Model Checking, Synthesis, and
Learning - Essays Dedicated to Bengt Jonsson on The Occasion of His 60th
Birthday. Ed. by Ernst-Rüdiger Olderog, Bernhard Steffen, and Wang Yi.
Vol. 13030. Lecture Notes in Computer Science. Springer, 2021, pp. 138–163.
doi: 10.1007/978-3-030-91384-7_8.

[55] Stefan Marksteiner, Peter Priller, and Markus Wolf. “Approaches for Au-
tomating Cybersecurity Testing of Connected Vehicles”. In: Intelligent Se-
cure Trustable Things. Ed. by Michael Karner et al. Cham: Springer Nature
Switzerland, 2024, pp. 219–234. doi: 10.1007/978-3-031-54049-3_13.

[56] Stefan Marksteiner, Marjan Sirjani, and Mikael Sjödin. “Using Automata
Learning for Compliance Evaluation of Communication Protocols on an
NFC Handshake Example”. In: Engineering of Computer-Based Systems -
8th International Conference,ECBS 2023, Västerås, Sweden, October 16-
18, 2023, Proceedings. Ed. by Jan Kofron, Tiziana Margaria, and Cristina
Seceleanu. Vol. 14390. Lecture Notes in Computer Science. Springer, 2023,
pp. 170–190. doi: 10.1007/978-3-031-49252-5_13.

[57] Jeroen Meijer and Jaco van de Pol. “Sound Black-Box Checking in the
LearnLib”. In: NASA Formal Methods - 10th International Symposium,
NFM 2018, Newport News, VA, USA, April 17-19, 2018, Proceedings. Ed.
by Aaron Dutle, César A. Muñoz, and Anthony Narkawicz. Vol. 10811.
Lecture Notes in Computer Science. Springer, 2018, pp. 349–366. doi:
10.1007/978-3-319-77935-5_24.

[58] Edward F. Moore. “Gedanken-Experiments on Sequential Machines”. In: Au-
tomata Studies. Ed. by C. E. Shannon and J. McCarthy. Princeton: Prince-

https://doi.org/10.1007/978-3-030-53288-8_25
https://doi.org/10.1007/978-3-031-25460-4_39
https://doi.org/10.1007/978-3-662-54577-5_12
https://doi.org/10.1007/978-3-662-54577-5_12
https://doi.org/10.1007/978-3-030-91384-7_8
https://doi.org/10.1007/978-3-031-54049-3_13
https://doi.org/10.1007/978-3-031-49252-5_13
https://doi.org/10.1007/978-3-319-77935-5_24


ton University Press, 1956, pp. 129–154. doi: doi:10.1515/9781400882618-
006.

[59] Edi Muskardin et al. “AALpy: An Active Automata Learning Library”. In:
Automated Technology for Verification and Analysis - 19th International
Symposium, ATVA 2021, Gold Coast, QLD, Australia, October 18-22, 2021,
Proceedings. Ed. by Zhe Hou and Vijay Ganesh. Vol. 12971. Lecture Notes
in Computer Science. Springer, 2021, pp. 67–73. doi: 10.1007/978-3-030-
88885-5_5.

[60] Thomas Neele and Matteo Sammartino. “Compositional Automata Learn-
ing of Synchronous Systems”. In: Fundamental Approaches to Software
Engineering - 26th International Conference, FASE 2023, Held as Part
of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2023, Paris, France, April 22-27, 2023, Proceedings. Ed. by Leen
Lambers and Sebastián Uchitel. Vol. 13991. Lecture Notes in Computer
Science. Springer, 2023, pp. 47–66. doi: 10.1007/978-3-031-30826-0_3.

[61] José Oncina and Pedro García. “Inferring regular languages in polynomial
update time”. In: World Scientific (Jan. 1992), pp. 49–61. doi: 10.1142/
9789812797902_0004.

[62] José Oncina, Pedro García, and Enrique Vidal. “Learning Subsequential
Transducers for Pattern Recognition Interpretation Tasks”. In: IEEE Trans.
Pattern Anal. Mach. Intell. 15.5 (1993), pp. 448–458. doi: 10.1109/34.
211465.

[63] Doron Peled, Moshe Y. Vardi, and Mihalis Yannakakis. “Black Box Check-
ing”. In: Formal Methods for Protocol Engineering and Distributed Systems:
FORTE XII / PSTV XIX. IFIP Advances in Information and Communica-
tion Technology. Ed. by Jianping Wu, Samuel T. Chanson, and Qiang Gao.
Boston, MA: Springer US, 1999, pp. 225–240. doi: 10.1007/978-0-387-
35578-8_13.

[64] Andrea Pferscher and Bernhard K. Aichernig. “Fingerprinting Bluetooth
Low Energy Devices via Active Automata Learning”. In: Formal Methods -
24th International Symposium, FM 2021, Virtual Event, November 20-26,
2021, Proceedings. Ed. by Marieke Huisman, Corina S. Pasareanu, and
Naijun Zhan. Vol. 13047. Lecture Notes in Computer Science. Springer,
2021, pp. 524–542. doi: 10.1007/978-3-030-90870-6_28.

[65] Andrea Pferscher and Bernhard K. Aichernig. “Learning Abstracted Non-
deterministic Finite State Machines”. In: Testing Software and Systems -
32nd IFIP WG 6.1 International Conference, ICTSS 2020, Naples, Italy,
December 9-11, 2020, Proceedings. Ed. by Valentina Casola, Alessandra De
Benedictis, and Massimiliano Rak. Vol. 12543. Lecture Notes in Computer
Science. Springer, 2020, pp. 52–69. doi: 10.1007/978-3-030-64881-7_4.

[66] Swantje Plambeck, Lutz Schammer, and Görschwin Fey. “On the Viability
of Decision Trees for Learning Models of Systems”. In: 27th Asia and
South Pacific Design Automation Conference, ASP-DAC 2022, Taipei,
Taiwan, January 17-20, 2022. IEEE, 2022, pp. 696–701. doi: 10.1109/ASP-
DAC52403.2022.9712579.

https://doi.org/doi:10.1515/9781400882618-006
https://doi.org/doi:10.1515/9781400882618-006
https://doi.org/10.1007/978-3-030-88885-5_5
https://doi.org/10.1007/978-3-030-88885-5_5
https://doi.org/10.1007/978-3-031-30826-0_3
https://doi.org/10.1142/9789812797902_0004
https://doi.org/10.1142/9789812797902_0004
https://doi.org/10.1109/34.211465
https://doi.org/10.1109/34.211465
https://doi.org/10.1007/978-0-387-35578-8_13
https://doi.org/10.1007/978-0-387-35578-8_13
https://doi.org/10.1007/978-3-030-90870-6_28
https://doi.org/10.1007/978-3-030-64881-7_4
https://doi.org/10.1109/ASP-DAC52403.2022.9712579
https://doi.org/10.1109/ASP-DAC52403.2022.9712579


[67] Harald Raffelt, Bernhard Steffen, and Tiziana Margaria. “Dynamic Testing
Via Automata Learning”. In: Hardware and Software: Verification and Test-
ing, Third International Haifa Verification Conference, HVC 2007, Haifa,
Israel, October 23-25, 2007, Proceedings. Ed. by Karen Yorav. Vol. 4899.
Lecture Notes in Computer Science. Springer, 2007, pp. 136–152. doi:
10.1007/978-3-540-77966-7_13.

[68] Joeri de Ruiter and Erik Poll. “Protocol State Fuzzing of TLS Implemen-
tations”. In: 24th USENIX Security Symposium, USENIX Security 15,
Washington, D.C., USA, August 12-14, 2015. Ed. by Jaeyeon Jung and
Thorsten Holz. USENIX Association, 2015, pp. 193–206. url: https://www.
usenix . org / conference / usenixsecurity15 / technical - sessions /
presentation/de-ruiter.

[69] Ocan Sankur. “Timed Automata Verification and Synthesis via Finite
Automata Learning”. In: Tools and Algorithms for the Construction and
Analysis of Systems - 29th International Conference, TACAS 2023, Held
as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2022, Paris, France, April 22-27, 2023, Proceedings, Part
II. Ed. by Sriram Sankaranarayanan and Natasha Sharygina. Vol. 13994.
Lecture Notes in Computer Science. Springer, 2023, pp. 329–349. doi:
10.1007/978-3-031-30820-8_21.

[70] Muhammad Muzammil Shahbaz. “Reverse Engineering Enhanced State
Models of Black Box Software Components to support Integration Testing”.
PhD thesis. Institut Polytechnique de Grenoble, France, Dec. 2008.

[71] Junya Shijubo, Masaki Waga, and Kohei Suenaga. “Efficient Black-Box
Checking via Model Checking with Strengthened Specifications”. In: Run-
time Verification - 21st International Conference, RV 2021, Virtual Event,
October 11-14, 2021, Proceedings. Ed. by Lu Feng and Dana Fisman.
Vol. 12974. Lecture Notes in Computer Science. Springer, 2021, pp. 100–
120. doi: 10.1007/978-3-030-88494-9_6.

[72] Wouter Smeenk et al. “Applying Automata Learning to Embedded Control
Software”. In: Formal Methods and Software Engineering - 17th Interna-
tional Conference on Formal Engineering Methods, ICFEM 2015, Paris,
France, November 3-5, 2015, Proceedings. Ed. by Michael J. Butler, Sylvain
Conchon, and Fatiha Zaïdi. Vol. 9407. Lecture Notes in Computer Science.
Springer, 2015, pp. 67–83. doi: 10.1007/978-3-319-25423-4_5.

[73] Rick Smetsers et al. “Complementing Model Learning with Mutation-Based
Fuzzing”. In: CoRR abs/1611.02429 (2016). arXiv: 1611.02429.

[74] Bernhard Steffen, Falk Howar, and Maik Merten. “Introduction to Active
Automata Learning from a Practical Perspective”. In: Formal Methods
for Eternal Networked Software Systems - 11th International School on
Formal Methods for the Design of Computer, Communication and Software
Systems, SFM 2011, Bertinoro, Italy, June 13-18, 2011. Advanced Lectures.
Ed. by Marco Bernardo and Valérie Issarny. Vol. 6659. Lecture Notes in
Computer Science. Springer, 2011, pp. 256–296. doi: 10.1007/978-3-642-
21455-4_8.

https://doi.org/10.1007/978-3-540-77966-7_13
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://doi.org/10.1007/978-3-031-30820-8_21
https://doi.org/10.1007/978-3-030-88494-9_6
https://doi.org/10.1007/978-3-319-25423-4_5
https://arxiv.org/abs/1611.02429
https://doi.org/10.1007/978-3-642-21455-4_8
https://doi.org/10.1007/978-3-642-21455-4_8


[75] Chris McMahon Stone, Tom Chothia, and Joeri de Ruiter. “Extending
Automated Protocol State Learning for the 802.11 4-Way Handshake”. In:
Computer Security - 23rd European Symposium on Research in Computer
Security, ESORICS 2018, Barcelona, Spain, September 3-7, 2018, Pro-
ceedings, Part I. Ed. by Javier López, Jianying Zhou, and Miguel Soriano.
Vol. 11098. Lecture Notes in Computer Science. Springer, 2018, pp. 325–345.
doi: 10.1007/978-3-319-99073-6_16.

[76] Martin Tappler, Bernhard K. Aichernig, and Roderick Bloem. “Model-
Based Testing IoT Communication via Active Automata Learning”. In:
2017 IEEE International Conference on Software Testing, Verification and
Validation, ICST 2017, Tokyo, Japan, March 13-17, 2017. IEEE Computer
Society, 2017, pp. 276–287. doi: 10.1109/ICST.2017.32.

[77] Frits W. Vaandrager, Masoud Ebrahimi, and Roderick Bloem. “Learning
Mealy machines with one timer”. In: Inf. Comput. 295.Part B (2023),
p. 105013. doi: 10.1016/J.IC.2023.105013.

[78] Frits W. Vaandrager et al. “A New Approach for Active Automata Learning
Based on Apartness”. In: Tools and Algorithms for the Construction and
Analysis of Systems - 28th International Conference, TACAS 2022, Held
as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings,
Part I. Ed. by Dana Fisman and Grigore Rosu. Vol. 13243. Lecture Notes
in Computer Science. Springer, 2022, pp. 223–243. doi: 10.1007/978-3-
030-99524-9_12.

[79] Pepe Vila et al. “CacheQuery: learning replacement policies from hard-
ware caches”. In: Proceedings of the 41st ACM SIGPLAN International
Conference on Programming Language Design and Implementation, PLDI
2020, London, UK, June 15-20, 2020. Ed. by Alastair F. Donaldson and
Emina Torlak. ACM, 2020, pp. 519–532. doi: 10.1145/3385412.3386008.

[80] Leon Vitorovic. “Query-Parallelisierung des ADT Learners in der LearnLib”.
In german. Bachelor’s thesis. TU Dortmund University, 2024.

[81] Masaki Waga. “Falsification of cyber-physical systems with robustness-
guided black-box checking”. In: HSCC ’20: 23rd ACM International Con-
ference on Hybrid Systems: Computation and Control, Sydney, New South
Wales, Australia, April 21-24, 2020. Ed. by Aaron D. Ames, Sanjit A.
Seshia, and Jyotirmoy Deshmukh. ACM, 2020, 11:1–11:13. doi: 10.1145/
3365365.3382193.

[82] Masaki Waga et al. “Dynamic Shielding for Reinforcement Learning in
Black-Box Environments”. In: Automated Technology for Verification and
Analysis - 20th International Symposium, ATVA 2022, Virtual Event,
October 25-28, 2022, Proceedings. Ed. by Ahmed Bouajjani, Lukás Holík,
and Zhilin Wu. Vol. 13505. Lecture Notes in Computer Science. Springer,
2022, pp. 25–41. doi: 10.1007/978-3-031-19992-9_2.

https://doi.org/10.1007/978-3-319-99073-6_16
https://doi.org/10.1109/ICST.2017.32
https://doi.org/10.1016/J.IC.2023.105013
https://doi.org/10.1007/978-3-030-99524-9_12
https://doi.org/10.1007/978-3-030-99524-9_12
https://doi.org/10.1145/3385412.3386008
https://doi.org/10.1145/3365365.3382193
https://doi.org/10.1145/3365365.3382193
https://doi.org/10.1007/978-3-031-19992-9_2

	LearnLib: 10 years later

