
Spectrum-Based Fault Localization
in Deployed Embedded Systems
with Driver Interaction Models⋆

Ulrich Thomas Gabor1[0000−0003−4143−2400], Simon Dierl1[0000−0001−9730−9335],
and Olaf Spinczyk2

1 TU Dortmund, Department of Computer Science, 44227 Dortmund, Germany
{ulrich.gabor,simon.dierl}@tu-dortmund.de

2 Osnabrück University, Institute of Computer Science, 49090 Osnabrück, Germany
olaf.spinczyk@uni-osnabrueck.de

Abstract. Software faults are still a problem especially in deployed sys-
tems. We propose a new approach to monitor a deployed embedded
system with another embedded system, which acts autonomously and
isolated. The monitoring system generates reports containing probable
fault locations, which can later be obtained without requiring expensive
debugging hardware or continuous access to the monitored embedded
system. For this, we assessed failure-detection oracles, transaction de-
tectors and suspiciousness metrics and evaluated them in a practical
combustion engine scenario. Especially, we propose a driver interaction
model to capture correct interaction with periphery and use it as oracle.
Our results show that for the repetitive behavior of an engine control
unit, simple approaches perform best.

Keywords: Reliability · Fault Tolerance · Software Reliability · Embed-
ded Software · Software Quality

1 Introduction

Despite the continuous efforts of software engineering researchers, software faults
are still a problem in modern software development [19] leading to failures. They
can bring down spacecrafts [27] or whole data centers3 and with the increasing
number of pervasive embedded systems in households, e.g., smart speakers, fail-
ures are becoming more in absolute numbers due to the sheer number of devices.

While debugging techniques have improved in recent years, for example due
to better update mechanisms and systematic capture of crash/trace logs, regu-
larly there is still a lot of manual effort required to deal with logs, bug reports
and traces. Since manual labor is not only time-consuming, but also expensive,

⋆ The final authenticated version is available online at https://doi.org/10.1007/
978-3-030-26601-1_7

3 https://status.aws.amazon.com/s3-20080720.html

https://doi.org/10.1007/978-3-030-26601-1_7
https://doi.org/10.1007/978-3-030-26601-1_7
https://status.aws.amazon.com/s3-20080720.html


2 Ulrich Thomas Gabor, Simon Dierl, and Olaf Spinczyk

the vision is to automatically assess such bug-related data and pinpoint the most
probable fault location for the expensive skilled developer.

Spectrum-based fault localization (SBFL) [24] is one approach serving
this purpose and is based on the fact that if a failure is observed, the faulty com-
ponent of a program must have been executed and therefore should be present
in information regarding this run. A program spectrum [24] entails execution
information from a specific perspective, e.g., which components were executed.
Such multiple spectra can be obtained for multiple runs together with an error
vector containing if the corresponding run failed or succeeded.

The idea is to find a relation between the spectra and the error vector, such
that components can be ranked for examination. The function mapping spectra
and an error vector to a suspiciousness [15] is called suspiciousness met-
ric [31]. For efficient computation, some suspiciousness metrics depend only on
aggregated information. For each component an aggregated matrix [3] can be
constructed, which lists the four counts for “component was or was not executed
in a succeeding or failing run”.

These definitions can be modified in granularity such that a component is not
a module or file, but a called function. Another variant is that a run is actually
not a full run, but a run is split into transactions and each transaction is assessed
as failing or succeeding.

1.1 Motivation

Observing already deployed embedded systems can be challenging, because ac-
cess to deployed systems is often restricted, for example, because the device is
not accessible physically. Attaching debuggers to every deployed system may also
not be an option due to regularly high costs of debuggers and it might not be
possible to reach the devices at all, besides scheduling an on-site appointment.

Our motivation is to be able to assess information on another small, cheap
embedded system which we will call monitor and only transmit or save an ag-
gregated fault localization report. These reports can then be transmitted using
little bandwidth or can be downloaded at the next on-site inspection.

1.2 Requirements

The proposed idea to generate fault localization reports directly in the field
should fulfill multiple requirements. First, the reports should obviously assist
in localizing bugs. Second, the monitoring should work autonomously, without
manual intervention, at least until the reports are obtained. Third, the moni-
toring must operate in isolation, because a failure in the embedded device must
be assessed properly and should not lead to a failure of the monitor and vice
versa. As an additional bonus, it should be possible to monitor arbitrary ex-
isting software without the need to change the source code of the monitored
application.



SBFL in Deployed Embedded Systems with Driver Interaction Models 3

1.3 Contributions

In this paper we present a new approach, which fulfills the aforementioned re-
quirements. We use an additional embedded system to monitor the physically
isolated application-under-test. Further, we assess multiple spectrum types and
suspiciousness metrics regarding their suitability for the proposed use case and
evaluate them in the context of control software for a simulated combustion
engine. Since the monitoring should work autonomously, we also need an or-
acle to determine if a failure actually occurred and for long-running systems
the execution must be split into shorter so-called transactions by a transaction
detector [8]. To the best of our knowledge, we are the first to consider machine-
learned driver interaction models as failure-oracle in a spectrum-based software
fault localization resulting in suspiciousness rankings. These models allow us to
detect failures based on the modeled communication with periphery. Finally,
we use the AspectC++ compiler, which provides aspect-oriented programming
(AOP) features for C++ [26], to instrument the application-under-test and make
it transmit information to the monitoring device without forcing the developer
to modify the source code.

1.4 Paper Organization

We will list related work in Section 2 and our new approach performing fault
localization on an deployed embedded system in Section 3. Section 4 will demon-
strate why our approach is feasible for our specific use case and in Section 5 we
will name threats to validity, since our use-case is quite specific. Finally, Section 6
will summarize our findings.

2 Related Work

Fault localization can be done using multiple approaches. One of these ap-
proaches is model-based diagnosis. Abreu et. al use observations to construct
a propositional formula, but finding an assignment, i.e., a faulty component,
boils down to find a minimal hitting set [2], for which even approximations
require noticeable computational power. Other approaches require manual mod-
eling of the expected behavior [14], which can be a complex and error-prone
task. Model-based approaches are therefore not the best choice for our setting.

Another approach is based on coverage-based techniques, which often require
to compute full or dynamic slices, showing which statements of a program mod-
ify a variable or were executed. Xiaolin et. al have combined execution coverage
of statements based on test cases with execution slices in a prototype implemen-
tation called HSFal to improve suspiciousness metrics and found their approach
to reduce the average cost of examined code around 2.98% – 31.79% [16]. While
the idea seems reasonable to us, slices are statement-based and that will likely
exceed the available memory on small systems.

The most promising approach for our setting are spectrum-based fault lo-
calization approaches, where only a subset of the observable information of an



4 Ulrich Thomas Gabor, Simon Dierl, and Olaf Spinczyk

application is taken into account, therefore we used this method. This approach
has already successfully been used for embedded systems by Abreu et. al [5], but
they inserted detectors manually in source code, which requires human effort
and knowledge of the functionality of the application. Others regularly use unit
tests or metamorphic testing [32] for failure detection in case unit tests are not
possible. There are also approaches which combine spectrum-based with model-
based techniques [3], but they also require more computational power than is
available on low-cost microprocessors.

One core-component of classical spectrum-based approaches is the choice
of an appropriate suspiciousness metric, where the so-called Ochiai metric out-
performed other metrics when applied in real scenarios [4,18]. Recent approaches
tried to combine multiple metrics by learning a weight from previous faults and
applying the weights to compute suspiciousness for new faults [33], but this again
requires computational power not available in the field of embedded systems. It
might be possible though to perform the learning phase before deploying the
system, but we have not yet examined this. Instead we just selected multiple
existing metrics and compared them.

3 Methodology

Our overall methodology is shown in Fig. 1. On the left side the system-under-
test is shown, which was augmented with a tracing component, transmitting
trace data to the monitoring machine. In our case we have used AspectC++ to
inject the tracing seamlessly into an existing application. Although this does not
have to be done with AOP, it has the advantage of injecting trace code into the
application without modifying the original source code.

The monitoring machine on the right performs all of the fault localization
functionality. The continuous stream of information provided by the target ma-
chine is assessed by an oracle to decide if the current transaction is succeeding
or failing. At the same time the stream is analyzed by a transaction detector to
check if the data belongs to a new transaction, in which case the aggregation
unit is informed. All information is aggregated to save space and a report based
on the obtained information can be generated.

The report should rank software components according to their suspicious-
ness for being responsible for a failed run. A human can then inspect the com-
ponents in that order.

3.1 Methodology Variants

Our method is not concrete about the used mechanisms as oracle or transaction
detector. In fact, we will evaluate multiple variants in Section 4. Therefore, we
will introduce multiple concepts in the rest of this section, which are evaluated
regarding their individual efficacy later.



SBFL in Deployed Embedded Systems with Driver Interaction Models 5

Target Machine

Target OS
& Program

Tracing
Aspect

Caller

Callee

Monitoring Machine

Host OS & SBFL Analyzer

Data
Input

Oracle

Transaction
Detectors

Aggregation

SBFL
Analysis

Trace Data

R
ep

ort

Fig. 1. High-level architecture of the analysis framework yielding a fault localization
report

3.2 Observed Entities For Spectrum Generation

Section 1 introduced the concept of “components” in different granularity. We
will use the called functions of a program as “components” to be able to pinpoint
faults with little human effort.

Additionally, we will assess the benefit of using the extension method call
sequence hit spectra (MCSHS) [9,30] in our evaluation, where “components”
are method call sequences of length z. For example, for the method hit sequence
⟨f(), g(), h()⟩ and z = 2 the following two “components” would be marked as
executed {(f(), g()), (g(), g())}. With z = 1 the extension is disabled and only
called functions without their predecessors will be used.

3.3 Transaction Detector

We have assessed the well-known timing-based transaction detector, which splits
the input stream every second into separate transactions as proposed by Abreu
et. al [1]. This is necessary if a system cannot easily provide separate runs, for
example because it runs continuously. Since results with these transactions were
already good, see Section 4, we have not examined other approaches.

3.4 Failure-Detection Oracle

Our idea for a failure-detecting oracle is based on the fact that one of the main
purposes of an embedded system is to interact with its environment. We use this
fact to learn how correct interaction with periphery looks like and use this model
to decide, if an embedded system still behaves as expected or failed. We call this
model driver interaction model (DIM), which is a finite state machine where
all states are accepting and the input symbols are communication messages to
the hardware. A DIM for a fictional wireless chipset driver can be seen in Fig. 2.



6 Ulrich Thomas Gabor, Simon Dierl, and Olaf Spinczyk

(scan, . . . )

(connect, fail)

(connect, okay)

(send, okay)
(send, . . . )

(send, okay), (hasData, false)

(send, . . . )

(hasData, true)
(receive, . . . )

Fig. 2. A fictional DIM for a wireless chipset driver

We propose that either a correct implementation or the successful executions
during development, e.g., supported by unit tests, can be used to learn a DIM,
which can then be deployed with the monitoring system. In the unfamiliar en-
vironment our model will detect potential failures, which can be used by the
developer to either fix a fault or to improve the DIM iteratively. Our approach is
therefore applicable in multiple scenarios, for example helping a developer imple-
ment new software, but also checking a re-implementation or software variant.

For that, once a driver interaction model was learned, it can be saved. It can
then be loaded later again and augmented with new information, but it is also
possible to manually modify or check the model according to a specification.

Learning driver interaction models is a CPU- and memory-intensive task
and requires multiple runs as reference data, which is another reason why we
propose to learn the model beforehand and deploy it on the monitoring machine.
We used a variance of the k-tails algorithm [6] to merge equivalent states during
learning. Regularly, two states are equivalent if their k-tails are equal, i.e., the
same words of length k are accepted beginning from the two states. We relaxed
this and consider states for merging if the source state’s k-tail is contained in
the target state’s k-tail to obtain more realistic models. Since the learning data
is based on sequences of method calls, each node (besides an initial node) has
exactly one k-tail and merging nodes will not lead to more k-tails, otherwise
the nodes would not have been merged. This observation allows to merge states
during learning using a map from k-tails to already inferred nodes. Learning a
new node is done by first checking if the k-tail is present in the map. If it is, the
two nodes are merged; if not, a new node is created and the map updated with
this newly created node.

This algorithm is used to merge similar traces. Consider the most basic exam-
ple, where identical message sequences occur in two traces, e.g., (connect, okay)
→ (send, okay) → (send, . . . ). It is likely that in both traces the periphery’s
internal state was identical, therefore the origin states are merged.



SBFL in Deployed Embedded Systems with Driver Interaction Models 7

Such a driver interaction model can be used as oracle by following transitions
and in case this is not possible, a failure is detected. If the execution should
continue after a failure was detected, we just try to find fitting transitions for
the next events starting in the erroneous state. A reset threshold r is used and
after r successful consecutive transitions, the oracle is used to detect failures
again. If not specified otherwise, we used the learning parameter k also as reset
threshold, as this is the first intuitive choice.

Interaction can be observed on different abstraction levels, e.g., binary com-
munication or already decoded packages, and the data can be obtained either
directly in the driver or via an external sniffer.

We also examined software behavior graphs (SBG) [20], a graph where
nodes correspond to functions and an edge (s, t) exists, if function s calls function
t. They can be learned from trace data and during fault localization encountering
a missing edge can be interpreted as a failure. Since the evaluation in Section 4
shows that they do not perform well in our setting, we will not go into details.

3.5 Thread Separation

Since modern software is often executed in parallel and even embedded systems
make use of multi-core CPUs nowadays, it is sometimes necessary or at least
helpful to know which CPU or thread caused a failure. We investigated a mech-
anism to isolate parallel executions. Since we did not want to expect that an
embedded operating system provides a thread abstraction, we configured our
approach to use the CPU core id as identifier, although it is possible to use a
thread id in systems where this abstraction exists.

3.6 Failure Indexing

Spectrum-based fault localization (SBFL) is guided by the idea to localize one
fault, whereas in practice often multiple faults will be present simultaneously. If
enough computational power is present, this is not a problem, as one fault can be
fixed, and then another SBFL experiment can be run. In long-running, isolated
systems, this is not that easy, therefore it is preferable to collect information
regarding multiple faults at the same time, if possible. One problem is, how the
observed effects can be pinpointed to one of multiple faults. One idea is to use the
information which oracle detected the failure caused by a fault or how it detected
the failure to distinguish different causes. This is called failure indexing. We
will assess in the next section if this feature helps in our use case.

4 Evaluation and Application

We have implemented our approach and performed multiple experiments to de-
termine the best choice and configuration regarding oracles/detectors and pa-
rameters presented in the last section.



8 Ulrich Thomas Gabor, Simon Dierl, and Olaf Spinczyk

4.1 Testbed

We have implemented our approach exemplarily based on the embedded operat-
ing system CyPhOS [7], running the application EMSComponent [25] simulating
an engine control unit on a Wandboard Quad – a development board hosting an
i.MX6 CPU providing the ARM Cortex-A9 instruction set and 2GB of RAM.
We used the same operating system and board to deploy the monitoring system.
To simulate a combustion engine, EMSBench4 [17] was used, which was deployed
on an STM32F4-Discovery development board – a low-power development board
featuring an ARM Cortex-M3 CPU.

To trace the application we used AspectC++, which can be easily integrated
into the CyPhOS build process. It was used to transmit information about called
methods and driver interaction events to the monitoring machine. Since As-
pectC++ automatically numbers relevant methods sequentially (join point ID,
short: JPID), we used these numbers to identify functions. Although this is not
necessary for our approach, it is convenient to transmit information efficiently.
We also used AspectC++ to modify the low-level GPIO driver to obtain trace
data for the driver-interaction-model oracle.

Since most suspiciousness metrics are easy to compute, we included five met-
rics in total: Barinel [3], D∗ [28], Ochiai [23], Op2 [21] and Tarantula [15], where
D∗ is parametrized with ∗ ∈ N.

To compute these metrics we only need the aggregated matrices as described
in Section 1. Further, we reduced memory occupation by only storing the lower
row of aggregated matrices, the one which counts the succeeding/failing transac-
tions the component participated in, and two counters for succeeding and failing
over all transactions. The upper row can be recomputed from these. Actually,
storing the spectra and aggregated matrix requires some more thought to not
exhaust the available memory. We have used a variation of the trie data struc-
ture [12] to be able to use method call sequences as keys for storing.

Our approach uses a domain-agnostic oracle and transaction detector. As
a baseline for our experiments, we implemented domain-specific counterparts.
The domain-specific oracle detects an error in CyPhOS by monitoring the crash
handler. Since CyPhOS is a component-based operating system, it was possible
to use calls of the function to switch between two components as an identifier
for a new transaction. We will later refer to this transaction detector as “OSC”.

We used our own tool [13] to inject software faults according to a well-known
fault model [10,22], without the addition for more realistic faults based on soft-
ware metrics. We filtered faults which were not useful, e.g., resulted in images
that did not boot or modifications in dead code, resulting in 41 patches inserting
faults into the application, see Fig. 2 for an explanation of the corresponding
abbreviations.

4 https://www.informatik.uni-augsburg.de/en/chairs/sik/research/running/
emsbench/

https://www.informatik.uni-augsburg.de/en/chairs/sik/research/running/emsbench/
https://www.informatik.uni-augsburg.de/en/chairs/sik/research/running/emsbench/


SBFL in Deployed Embedded Systems with Driver Interaction Models 9

4.2 Experiments

We performed multiple experiments to determine the best oracle and the best
configuration for our use case. For that, we have performed the following steps:

– Generate patch files to inject software faults into our application.
– Learn a driver interaction model and a software behavior graph from suc-

cessful runs to determine the quality of the oracles regarding detection of
failures triggered by the previously generated faults, and assess the impact
of parameter k of our k-tails learning algorithm.

– Determine speed and therefore feasible configurations for continuous moni-
toring.

– Determine whether thread separation and which transaction detection mech-
anism performs best.

– Assess found configurations as a whole.

Table 1. Oracle-detected errors for the injected faults per driver interaction model
(DIM) with different k, software behavior graph (SBG) and domain-specific CPU ex-
ception detector

Fault Type Oracle Fault Type Oracle Fault Type Oracle
MFC-1 2-DIM MIES-2 MLPA-2
MFC-2 1, 2-DIM MIES-4 MLPA-10 1, 2-DIM
MFC-4 MIES-6 2-DIM MLPA-26 1, 2-DIM
MFC-5 MIES-7 2-DIM MLPA-29 2-DIM
MFC-6 1, 2-DIM MIES-11 2-DIM MLPA-30 2-DIM
MIA-2 MIFS-1 MRS-1
MIA-3 MIFS-3 MRS-9 2-DIM
MIA-5 MIFS-5 MRS-10 CPU ex. & SBG
MIA-6 MIFS-7 2-DIM MRS-15
MIA-7 MIFS-8 2-DIM MRS-18 2-DIM
MIEB-2 1, 2-DIM MLOC-3 1, 2-DIM & SBG MVIV-7
MIEB-3 1, 2-DIM MLOC-4 1, 2-DIM MVIV-15
MIEB-4 2-DIM MLOC-5
MIEB-7 2-DIM MLOC-8
MIEB-10 2-DIM

To learn driver interaction models, we used 15 runs of the EMSComponent
for k-tails with k = 1, . . . , 10, but already for k = 3 the resulting oracle returns
false-positives. Therefore, we only used k = 1 and k = 2, where for k = 2 the
oracle detected 53.7% of the errors, whereas for k = 1 only 19.5% were detected.
Table 1 shows detected errors caused by injected faults for the driver interaction
model (DIM) with k = 1 or 2 in comparison to the domain-specific CPU excep-
tion detector, which detected only one error, and the software behavior graph
(SBG), which detected two errors. Since only our driver interaction model with



10 Ulrich Thomas Gabor, Simon Dierl, and Olaf Spinczyk

Table 2. Fault types used for software fault injection in our experiments

MFC Missing function call
MIA Missing if construct around statements
MIEB Missing if construct plus statements plus else before statements
MIES Missing if construct plus statements plus else plus statements
MIFS Missing if construct plus statements
MLOC Missing OR clause in branch condition
MLPA Missing small and localized part of the algorithm
MRS Missing return statement
MVIV Missing variable initialization using a value

learning parameter k = 2 was able to identify a notable number of errors at all,
we used this oracle for all further experiments.

Next, we evaluated the parameter specifying the length of method call se-
quences with and without failure indexing and thread separation, so that trace
information can be processed on another device without loosing information. The
maximum baud rate of the used UART is 460,800, which leads to a maximum
of 57,600B/s or, with our encoding, 3,840 event messages per second. Table 3
shows the resulting numbers, where the processing numbers high enough to cope
with the maximum baud rate are highlighted bold. As can be seen, only for a
method call sequence length of z = 1 (see Section 3.2) the speed is always above
the necessary computation border. Since it may be possible to improve the im-
plementation and therefore increase the processing speed or use buffers on the
monitoring device to puffer trace bursts, we did not drop sequence length of 2
altogether, but will assess it in later experiments. Although, it remains an open
question if the computations can be actually improved to fulfill the real-time
requirements.

Table 3. Processing speeds for different campaign configurations

Sequence Failure Thread
Length Indexing Separation Avg. B/s Min. B/s

2 yes yes 11 196 5 441
2 yes no 7 445 3 344
2 no yes 20 788 10 032
2 no no 12 813 5 777
1 yes yes 81 335 48 819
1 yes no 68 147 39 683
1 no yes 146 787 95 129
1 no no 127 094 76 523

Our overall goal is to find the best combination and configuration of tech-
niques and parameters for our fault-localization approach. We will use the well-
known EXAM metric [29] to assess the performance. The EXAM metric specifies



SBFL in Deployed Embedded Systems with Driver Interaction Models 11

in percent what proportion of the reported code positions have to be examined
before actually encountering the faulty position. Therefore, a value of 0% is best.

We first compared the six suspiciousness metrics mentioned in the intro-
duction, see Section 1, each with and without thread separation and different
transaction detection approaches in Table 4. We show the average EXAM score
over all faults and its standard deviation. Since multiple experiments resulted in
a perfect EXAM score of 0%, we also show the number of these experiments.

One can draw at least two conclusions from these experiments. First, activat-
ing thread separation leads to worse EXAM scores in nearly all cases. Although
our workload was mostly single-threaded it is still a surprise that this feature
is mostly hindering. Our best guess at the moment is that activating this fea-
ture led to a high number of successful transactions on other cores which had a
negative influence on the metrics. This would explain the good performance of
Barinel and Tarantula metric, which become more accurate when the number
of successful runs vastly exceed the number of runs of the faulty component.
Since our workload was not suitable to examine this problem further, we leave
this for future work. Second, the timer-based transaction detector outperformed
the domain-agnostic component-based detector (“OSC”), although the influence
is not as severe as that of thread separation.

Table 4. Accuracy results in EXAM metric for different analysis configurations

#0% Avg. σ #0% Avg. σ #0% Avg. σ
Thread Trans. Barinel D2 D3

Sep. Detect. Ochiai Op2 Tarantula
off OSC 11 5.1% 8.1pp 13 4.7% 8.2pp 13 4.7% 8.2pp

13 4.7% 8.2pp 13 4.7% 8.2pp 11 5.1% 8.1pp
off timer 13 2.9% 4.1pp 15 2.7% 4.7 pp 15 2.7% 4.7 pp

14 3.0% 4.7pp 14 3.0% 4.7pp 12 3.6% 4.7pp
on OSC 1 43.2% 21.2 pp 1 44.5% 18.4 pp 0 43.1% 15.3 pp

1 44.5% 18.4 pp 0 43.1% 14.6 pp 1 43.2% 21.2 pp
on timer 13 5.6% 10.5 pp 0 27.4% 8.8 pp 0 27.8% 8.8 pp

0 27.8% 8.7 pp 0 28.3% 8.7 pp 12 6.0% 10.5pp

Since the results of Table 4 are quite clear, we configured our method with-
out thread separation and with the timer-based transaction detector to assess
some remaining questions in a last experiment. First, we analyzed whether using
parameters as part of the call sequence improves or worsens the results. Second,
we analyzed whether reducing the reset threshold has notable impact. Lastly,
we analyzed whether increasing the sequence length, and therefore actually us-
ing the MCSHS extension, improves fault localization. We performed the last
experiment despite having assessed already that our current implementation is
not able to cope with the trace data on time, but it may be possible to improve
the runtime of our method.



12 Ulrich Thomas Gabor, Simon Dierl, and Olaf Spinczyk

The results of our last experiments are shown in Table 5. As can be seen,
none of the experiments leads to significantly better results. If we ignore function
parameters and for example compare D2 and D3 with Table 4 it can be seen that
only the standard deviation improves, whereas the number of zero percent occur-
rences is reduced, i.e., some faulty components are not inspected first anymore.
Reducing the reset threshold to 1 actually worsens the results a bit. Regarding
the MCSHS extension, if we use the averaging proposed in the corresponding
paper [9], where each function is assigned a suspiciousness based on the suspi-
ciousness values of all sequences it appeared in, the results are significantly worse
than before, see the last row. If we instead use an approach where each method
occurring in the sequence is examined and therefore the suspiciousness of the
first occurrence of the faulty method in any sequence is significant, the results
improve a little bit, see the results highlighted bold, but we might lose trace data
due to missing real-time requirements, cf. Fig. 3. Additionally, depending on the
selected examination strategy, the number of methods to check is doubled with
k = 2. We can conclude that for our repetitive application the reset threshold
is not relevant and that using the MCSHS extension, if it could cope with the
trace data in real-time, would not improve the results significantly.

Table 5. Accuracy results in EXAM metric for variants of the “ideal” configuration

#0% Avg σ #0% Avg σ #0% Avg σ
Barinel D2 D3

Mode Ochiai Op2 Tarantula
Ignore 12 2.9% 3.8pp 13 2.7% 3.9pp 13 2.7% 3.9pp
Parameters 12 3.0% 4.0pp 12 3.0% 4.0pp 10 3.6% 4.0pp
Reset Threshold 12 3.2% 4.2pp 14 3.0% 4.7pp 14 3.0% 4.7pp

13 3.3% 4.7pp 14 3.0% 4.7pp 11 3.9% 4.7pp
Seq. Len. z = 2 12 3.8% 5.5pp 14 2.7% 4.9pp 14 2.7% 4.9pp
Best EXAM-Score 13 2.9% 4.9pp 14 2.4% 4.6 pp 11 4.1% 5.5pp
Seq. Len. z = 2 9 18.8% 24.1 pp 10 17.1% 22.2 pp 10 19.2% 23.3 pp
Avg EXAM-Score 9 17.9% 23.7 pp 10 21.1% 28.0 pp 8 19.3% 24.3 pp

5 Threats to Validity

While our results are promising, we used a specific setting hindering the extension
of these results to other experiments. Foremost, the repetitive work of the engine
control unit is very helpful when using statistical methods. In a setting where the
software or device has a wider range of functionality, our results may not hold.
However, many embedded systems implement control loops and are therefore
similar to our experiment. Second, the used fault model has a great impact on
the results. While we used a fault model widely accepted in the fault-injection
community it still may not accurately represent real faults of specific scenarios.



SBFL in Deployed Embedded Systems with Driver Interaction Models 13

Another problem can be that our instrumentation to transfer trace data to
another system might have an impact on the timing behavior of the system-
under-test. This can lead to modified behavior or cause it to violate real-time
constraints.

6 Conclusion

In this paper we have assessed spectrum-based fault localization techniques es-
pecially in the setting of deployed embedded systems, where continuous access to
the systems and expensive debugging hardware is not an option. We have com-
pared multiple known suspiciousness metrics using the EXAM score by applying
them in an engine-control-unit scenario and found that regularly less than 10%
of probable fault locations have to be analyzed to find the fault. Further, we
showed how oracles other than unit tests can be used to decide if an execution
was successful or failing, and for that case demonstrated a new form of passively
learned automaton, the driver interaction model, which can be used to learn
correct behavior when interacting with periphery. We have compared this oracle
with others and were able to show that our approach works well in our setting.

While our driver interaction models already performed good, during qualita-
tive examination we found that it may still be possible to improve their represen-
tativeness. In future work it may be promising to try to improve their accuracy
and expressiveness by using probabilistic or extended probabilistic automata [11]
instead.

In general it seems that a spectrum-based approach based on behavior-
comparing oracles seems useful above-average in a setting where the application
behavior is repetitive, where only limited memory is available to store (aggre-
gated) trace data and where observable interaction with external units takes
place. In this case even simple approaches already provide good results, i.e., it
is often enough to analyze the single most suspiciousness component to already
find the underlying fault.

Acknowledgement. We thank Erwin Schoitsch, Austrian Institute of
Technology (AIT), for his valuable feedback and dedicated effort to im-
prove this paper.

References

1. Abreu, R., Zoeteweij, P., van Gemund, A.J.C.: Program spectra analysis in embed-
ded software: A case study. Tech. Rep. TUD-SERG-2006-007, Software Engineering
Research Group, Delft University of Technology (2006), http://arxiv.org/abs/
cs/0607116

2. Abreu, R., Zoeteweij, P., van Gemund, A.J.C.: An observation-based model for
fault localization. In: Proceedings of the 2008 International Workshop on Dynamic
Analysis: Held in Conjunction with the ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA 2008). pp. 64–70. WODA ’08, ACM,
New York, NY, USA (2008). https://doi.org/10.1145/1401827.1401841

http://arxiv.org/abs/cs/0607116
http://arxiv.org/abs/cs/0607116
https://doi.org/10.1145/1401827.1401841


14 Ulrich Thomas Gabor, Simon Dierl, and Olaf Spinczyk

3. Abreu, R., Zoeteweij, P., van Gemund, A.J.C.: Spectrum-based multiple fault lo-
calization. In: Proceedings of the 2009 IEEE/ACM International Conference on
Automated Software Engineering. pp. 88–99. ASE ’09, IEEE Computer Society,
Washington, DC, USA (2009). https://doi.org/10.1109/ASE.2009.25

4. Abreu, R., Zoeteweij, P., Gemund, A.J.V.: An evaluation of similarity co-
efficients for software fault localization. In: 2006 12th Pacific Rim Interna-
tional Symposium on Dependable Computing (PRDC’06). pp. 39–46 (Dec 2006).
https://doi.org/10.1109/PRDC.2006.18

5. Abreu, R., Zoeteweij, P., Golsteijn, R., van Gemund, A.J.: A practical evaluation of
spectrum-based fault localization. Journal of Systems and Software 82(11), 1780–
1792 (2009). https://doi.org/10.1016/j.jss.2009.06.035, sI: TAIC PART 2007 and
MUTATION 2007

6. Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state machines from
samples of their behavior. IEEE Transactions on Computers C-21(6), 592–597
(Jun 1972). https://doi.org/10.1109/TC.1972.5009015

7. Borghorst, H., Spinczyk, O.: CyPhOS – A component-based cache-aware multi-
core operating system. In: Proceedings of the 32th International Conference on
Architecture of Computing Systems (ARCS ’19) (2019), to appear

8. Casanova, P., Schmerl, B., Garlan, D., Abreu, R.: Architecture-based run-time
fault diagnosis. In: Crnkovic, I., Gruhn, V., Book, M. (eds.) Software Architecture.
pp. 261–277. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

9. Dallmeier, V., Lindig, C., Zeller, A.: Lightweight Defect Localiza-
tion for Java, pp. 528–550. Springer, Berlin, Heidelberg (2005).
https://doi.org/10.1007/11531142_23

10. Durães, J.A., Madeira, H.S.: Emulation of software faults: A field data study and
a practical approach. IEEE Transactions on Software Engineering 32(11), 849–867
(Nov 2006). https://doi.org/10.1109/TSE.2006.113

11. Emam, S.S., Miller, J.: Inferring extended probabilistic finite-state automaton
models from software executions. ACM Trans. Softw. Eng. Methodol. 27(1), 4:1–
4:39 (Jun 2018). https://doi.org/10.1145/3196883

12. Fredkin, E.: Trie memory. Commun. ACM 3(9), 490–499 (Sep 1960).
https://doi.org/10.1145/367390.367400

13. Gabor, U.T., Siegert, D., Spinczyk, O.: Software-fault injection in source code
with Clang. In: Proceedings of the 32th International Conference on Architecture
of Computing Systems (ARCS ’19), Workshop Proceedings (2019), to appear

14. Hooman, J., Hendriks, T.: Model-based run-time error detection. In: Giese, H. (ed.)
Models in Software Engineering. pp. 225–236. Springer Berlin Heidelberg, Berlin,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-69073-3_24

15. Jones, J.A., Harrold, M.J.: Empirical evaluation of the tarantula automatic fault-
localization technique. In: Proceedings of the 20th IEEE/ACM International Con-
ference on Automated Software Engineering. pp. 273–282. ASE ’05, ACM, New
York, NY, USA (2005). https://doi.org/10.1145/1101908.1101949

16. Ju, X., Jiang, S., Chen, X., Wang, X., Zhang, Y., Cao, H.: HSFal: Effective fault
localization using hybrid spectrum of full slices and execution slices. Journal of
Systems and Software 90, 3–17 (2014). https://doi.org/10.1016/j.jss.2013.11.1109

17. Kluge, F., Ungerer, T.: EMSBench: Benchmark und Testumgebung für reaktive
Systeme. In: Halang, W.A., Spinczyk, O. (eds.) Betriebssysteme und Echtzeit.
pp. 11–20. Informatik aktuell, Springer (2015). https://doi.org/10.1007/978-3-662-
48611-5_2

https://doi.org/10.1109/ASE.2009.25
https://doi.org/10.1109/PRDC.2006.18
https://doi.org/10.1016/j.jss.2009.06.035
https://doi.org/10.1109/TC.1972.5009015
https://doi.org/10.1007/11531142_23
https://doi.org/10.1109/TSE.2006.113
https://doi.org/10.1145/3196883
https://doi.org/10.1145/367390.367400
https://doi.org/10.1007/978-3-540-69073-3_24
https://doi.org/10.1145/1101908.1101949
https://doi.org/10.1016/j.jss.2013.11.1109
https://doi.org/10.1007/978-3-662-48611-5_2
https://doi.org/10.1007/978-3-662-48611-5_2


SBFL in Deployed Embedded Systems with Driver Interaction Models 15

18. Le, T.D.B., Thung, F., Lo, D.: Theory and practice, do they match? A case with
spectrum-based fault localization. In: 2013 IEEE International Conference on Soft-
ware Maintenance. pp. 380–383 (Sep 2013). https://doi.org/10.1109/ICSM.2013.52

19. Li, Z., Tan, L., Wang, X., Lu, S., Zhou, Y., Zhai, C.: Have things changed now?:
An empirical study of bug characteristics in modern open source software. In: Pro-
ceedings of the 1st Workshop on Architectural and System Support for Improving
Software Dependability. pp. 25–33. ASID ’06, ACM, New York, NY, USA (2006).
https://doi.org/10.1145/1181309.1181314

20. Liu, C., Yan, X., Yu, H., Han, J., Yu, P.S.: Mining behavior graphs for “backtrace”
of noncrashing bugs. In: Proceedings of the 2005 SIAM International Conference
on Data Mining. pp. 286–297. Society for Industrial and Applied Mathematics
(2005). https://doi.org/10.1137/1.9781611972757.26

21. Naish, L., Lee, H.J., Ramamohanarao, K.: A model for spectra-based software
diagnosis. ACM Trans. Softw. Eng. Methodol. 20(3), 11:1–11:32 (Aug 2011).
https://doi.org/10.1145/2000791.2000795

22. Natella, R., Cotroneo, D., Duraes, J.A., Madeira, H.S.: On fault representativeness
of software fault injection. IEEE Transactions on Software Engineering 39(1), 80–
96 (Jan 2013). https://doi.org/10.1109/TSE.2011.124

23. Ochiai, A.: Zoogeographical studies on the soleoid fishes found in japan and its
neighbouring regions—II. Bulletin of the Japanese Society for the Science of Fish
22(9), 526–530. https://doi.org/10.2331/suisan.22.526

24. Reps, T., Ball, T., Das, M., Larus, J.: The use of program profiling for software
maintenance with applications to the year 2000 problem. In: Jazayeri, M., Schauer,
H. (eds.) Software Engineering — ESEC/FSE’97. pp. 432–449. Springer Berlin
Heidelberg, Berlin, Heidelberg (1997). https://doi.org/10.1007/3-540-63531-9_29

25. Schulte-Althoff, T.: Validierung des Echtzeitverhaltens des ereignisbasierten Be-
triebssystems CyPhOS am Beispiel einer Motorsteuerung (2017), https://ess.
cs.tu-dortmund.de/Teaching/Theses/

26. Spinczyk, O., Lohmann, D.: The design and implementation of As-
pectC++. Knowledge-Based Systems, Special Issue on Techniques
to Produce Intelligent Secure Software 20(7), 636–651 (Oct 2007).
https://doi.org/10.1016/j.knosys.2007.05.004

27. Stephenson, A.G., LaPiana, L.S., Mulville, D.R., Rutledge, P.J., Bauer, F.H., Folta,
D., Norvig, P.: Mars climate orbiter mishap investigation board phase I report (Nov
1999), https://llis.nasa.gov/llis_lib/pdf/1009464main1_0641-mr.pdf

28. Wong, W.E., Debroy, V., Gao, R., Li, Y.: The DStar method for effective software
fault localization. IEEE Transactions on Reliability 63(1), 290–308 (Mar 2014).
https://doi.org/10.1109/TR.2013.2285319

29. Wong, W.E., Debroy, V., Xu, D.: Towards better fault localization: A crosstab-
based statistical approach. IEEE Transactions on Systems, Man, and Cy-
bernetics, Part C (Applications and Reviews) 42(3), 378–396 (May 2012).
https://doi.org/10.1109/TSMCC.2011.2118751

30. Wong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F.: A survey on software fault
localization. IEEE Transactions on Software Engineering PP(99), 1–1 (2016).
https://doi.org/10.1109/TSE.2016.2521368

31. Xie, X., Chen, T.Y., Kuo, F.C., Xu, B.: A theoretical analysis of the risk evaluation
formulas for spectrum-based fault localization. ACM Trans. Softw. Eng. Methodol.
22(4), 31:1–31:40 (Oct 2013). https://doi.org/10.1145/2522920.2522924

32. Xie, X., Wong, W.E., Chen, T.Y., Xu, B.: Spectrum-based fault localization: Test-
ing oracles are no longer mandatory. In: 2011 11th International Conference on
Quality Software. pp. 1–10 (Jul 2011). https://doi.org/10.1109/QSIC.2011.20

https://doi.org/10.1109/ICSM.2013.52
https://doi.org/10.1145/1181309.1181314
https://doi.org/10.1137/1.9781611972757.26
https://doi.org/10.1145/2000791.2000795
https://doi.org/10.1109/TSE.2011.124
https://doi.org/10.2331/suisan.22.526
https://doi.org/10.1007/3-540-63531-9_29
https://ess.cs.tu-dortmund.de/Teaching/Theses/
https://ess.cs.tu-dortmund.de/Teaching/Theses/
https://doi.org/10.1016/j.knosys.2007.05.004
https://llis.nasa.gov/llis_lib/pdf/1009464main1_0641-mr.pdf
https://doi.org/10.1109/TR.2013.2285319
https://doi.org/10.1109/TSMCC.2011.2118751
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1145/2522920.2522924
https://doi.org/10.1109/QSIC.2011.20


16 Ulrich Thomas Gabor, Simon Dierl, and Olaf Spinczyk

33. Xuan, J., Monperrus, M.: Learning to combine multiple ranking metrics for fault
localization. In: 2014 IEEE International Conference on Software Maintenance and
Evolution. pp. 191–200 (Sep 2014). https://doi.org/10.1109/ICSME.2014.41

https://doi.org/10.1109/ICSME.2014.41

	Spectrum-Based Fault Localization in Deployed Embedded Systems with Driver Interaction Models

