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Abstract. In many machine scheduling studies, individual algorithms
for each problem have been developed to cope with the specifics of the
problem. On the other hand, the same underlying fundamentals (e.g.
Shortest Processing Time, Local Search) are often used in the algorithms
and only slightly modified for the different problems. This paper deals
with the synthesis of machine scheduling algorithms from components of
a repository. Especially flow shop and job shop problems with makespan
objective are considered to solve with Shortes/Longest Processing Time,
NEH, Giffler & Thompson algorithms. For these components, the pa-
per includes an exemplary implementation of an agile scheduling system
that uses the Combinatory Logic Synthesizer to recombine components
of scheduling algorithms to solve a given scheduling problem. Special at-
tention is given to the composition heuristics and the process of recombi-
nation to executable programs. The advantages of this componentization
are discussed and illustrated with examples. It will be shown that algo-
rithms can be generalized to deal with scheduling problems of different
machine environments and production constraints.

1 Introduction

In production, machine scheduling algorithms help to decide automatically when
a certain job should be executed on which machine. Many manufacturers have
not yet automated their machine scheduling. One reason is that for each ma-
chine scheduling problem with its numerous specific characteristics, suitable
algorithms have to be selected, adapted, and implemented individually. Each
practical scheduling problem can be categorized into a problem class, for which
dedicated heuristics are applicable. If a class is a subset of another class, the
heuristics of the superset class can often also be applied to the subset class.
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Also, relationships and overlapping between categories can be identified which
simplifies the transfer of heuristics between problem classes.

The assignment problem which a combination of heuristics or metaheuristics
should be chosen for which practical production environment concerning the
applicability, solution quality, and computing time represents a combinatorial
challenge. The synthesis framework Combinatory Logic Synthesizer ((CL)S) [1]
is suitable for the automated solution of this task. The (CL)S can construct
software from a collection of individual components and it is possible to specify
components semantically, which enables the (CL)S to select the appropriate com-
ponents. The framework then automatically generates all possible combinations
in the form of executable software.

The objective of the paper is to use the (CL)S-Framework to automatically
select and combine different algorithms to solve a given scheduling problem.
Therefore, we build a (CL)S repository of algorithms for different machine en-
vironments, which takes the relationships of the classes into account and auto-
matically composes selected algorithms for instances of these problems.

This paper is structured as follows: First, we present the general classifica-
tion scheme of machine scheduling problems. In the related work, we discuss
algorithms for scheduling of flow shop and job shop problems and present the
framework on which our implementation is based on, the (CL)S. The handling
of this framework, as well as the generation and composition of algorithms, is
shown in the fourth chapter with example runs. In detail, we show the poten-
tial of the tool and the resulting possibilities using the Giffler & Thompson’s
algorithm.

2 Classification of Machine Scheduling Problems

Machine scheduling problems can be specified by a tuple α|β|γ [2, pp. 288–290][3,
pp. 13–21][4, pp. 1–2]. In the following, parameter values are specified which are
considered in this paper.
The parameter α defines the amount and arrangement of machines [3, pp. 14–
15]:

– 1: Single Maschine, one machine is available for production.
– Fm: flow shop, m machines with one machine per processing stage. All jobs

follow the same route through the machines.
– Jm: job shop, m machines with one machine per stage. Each job has a

prescribed route through the stages. The route may differ between the jobs.
– Om: Open Shop, m machines, where each job can visit the machines one

after the other in an order that is determined by the planner.

Parameter β can contain as many entries as required and describes characteristics
and limitations of the production process:

– prmu: Permutation, the processing sequence of jobs from the first processing
stage through all machines is to be kept consistent [3, p. 17].
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– skip: skipping stages of jobs is possible (further example, but not applicated
in the paper) [5, pp. 1151–1155, 4, p. 13].

γ specifies the objective function:

– Cmax: Makespan, interval between production start of the first scheduled job
and finish time of the last job.

3 Related Work

In the following, important scheduling algorithms for these machine environ-
ments and β-constraints in combination with makespan minimization are de-
scribed, as well as related work according to the (CL)S.

3.1 Maschine Scheduling Algorithms for Flow Shops and Job Shops

In the context of machine scheduling, an enormous number of papers and al-
gorithms are available. Literature overviews for flow shops and job shops can
be found in Komaki, Sheikh, and Malakooti [6], Framinan, Gupta, and Leisten
[7] (permutation flow shop with makespan minimization) and Zhang et al. [8].
A comparison between commonly used algorithms for constructive flow shop
scheduling can be found in Ruiz and Maroto [9]. Different dispatching rules have
been studied in Arisha, Young, and El Baradie [10]. In the following, selectively
a few algorithms of the overviews are analyzed that dealt with flow shops or
job shops to minimize the makespan and are related to our problem classes (see
Section 2).

Some of the most commonly used constructive heuristics for flow shops and
job shops are Shortest Processing Time First (SPT), Longest Processing Time
First (LPT), and the NEH-heuristic (flow shops) and have therefore been con-
sidered in this paper. The benefits of dispatching rules like SPT and LPT are low
computational complexities and therefore fast calculations, and transparent be-
havior for production planners. The NEH-Heuristic, firstly published by Nawaz,
Enscore, and Ham [11, pp. 92–94] for permutation flow shops and makespan
minimization (Fm|prmu|Cmax) produces good results in most cases. Giffler and
Thompson [12] published a constructive algorithm that also applies rules like
SPT and LPT to job shops.

3.2 Giffler & Thompson algorithm

Using the algorithm by Giffler & Thompson, job shop as well as flow shop prob-
lems can be solved. It schedules exactly one job on a machine in each iteration,
so the algorithm returns complete schedules after m ∗ n iterations, where m is
the number of machines and n the amount of jobs. The heuristic is only pa-
rameterized by the applied dispatching rule. In the algorithm, this dispatching
rule decides between several competing jobs on the same machine. The imple-
mentation of the complete Giffler & Thompson algorithm is shown in Alg. 1.1.
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The algorithm consists of four phases where steps 2 to 4 iterate until all jobs
are scheduled [13, S. 75-76]. The calculated schedule and the completion times
of the scheduled jobs and for all machines are returned.

1 Let Zi be the completion time of machine i. Initialize Zi = 0 for i = 0, ...,m. Select
a dispatching rule.

2 Select machine i∗ that first can finish a job out of the set of jobs, which are waiting
to be processed next on one of the machines and are not scheduled yet.

3 From the set of all jobs waiting to be processed on this machine i∗ select one job by
the dispatching rule which is initalized in step 1.

4 Schedule selected job on machine i∗ and update Zi∗ . If there are jobs left to be
scheduled, return to step 2.

Algorithm 1.1: Implementation of the Giffler & Thompson algorithm

Alg. 1.1 works as follows. In each iteration (step 2-4), the machine is de-
termined, which can first complete a job. For this purpose, each not yet fully
scheduled job is iterated and the end time after scheduling on the next machine
to be visited is compared. Up to this point, it is a greedy algorithm that selects
a machine according to the earliest completion time on the next machine the job
has to be processed on. Once the machine to be scheduled has been determined,
in the second phase the job is varied to meet a prioritization on the machine.
This is done by determining all jobs that are also to be scheduled next on the
selected machine, including the job determined in the previous phase. If two
or more jobs are waiting to be scheduled on the selected machine, the jobs get
ranked according to the selected dispatching rule. After selecting a job on the
determined machine, it gets scheduled and Zi, as well as the current end time
of the job, gets updated.

3.3 Combinatory Logic Synthesizer

Combinatory Logic Synthesizer, short: (CL)S, is a type-based framework for
the synthesis of software from a set of components specified in a repository
[1]. The framework was developed in the programming language Scala and is
used in this paper. In addition to the synthesis, the framework also allows the
immediate execution of the synthesis result. Due to the implementation in the
Scala programming language, the synthesis results can also access existing Java
and Scala libraries. The framework (CL)S was developed at the chair 14 of the
faculty for Computer Science at the TU Dortmund University.

The Combinatory Logic Synthesizer ((CL)S) is particularly suitable for han-
dling unpredictable variability, which makes it well suited for the synthesis of
machine allocation algorithms in production planning. (CL)S enables the spec-
ification of components, their implementation, as well as the modeling of vari-
ability and the automatic composition of components under consideration of the
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modeled variability rules [14]. All this is uniformly done within the framework.
Thus, the framework provides a solid basis for mapping and specifying individ-
ual heuristics and algorithms, and is also suitable as a technological basis for the
automatic composition of components [15]. The (CL)S has been used in the past
for numerous applications of a similar nature. As an example, we mention the
automatic configuration of factory planning projects [16], the automatic gen-
eration of BPMN processes [17], and the automated configuration of plans in
construction projects [18]. The basis for the use of the framework is that within
the target domain, results can be composed of specifiable components. In the
(CL)S the specification is done by so-called semantic intersection types. How
components can be specified and implemented, and which solutions are then
generated automatically, is shown in the following chapters using an example.

4 Implementation

Machine
schedule

Constructive 
Heuristics

Iterative 
Metaheuristics

Dispatching
Rules

Neighbourhood
Strategies

Type of machine 
scheduling 

problem

(flow shop, job
shop) 

Demand data

Scrap data

Processing times

Set-up times

C

L

S

Composition
of heuristics

Objective function

Constraints

Fig. 1. Concept of schedule generation with (CL)S

The (CL)S-Repository contains all algorithm components as shown in Fig. 1,
which can be combined into an executable scheduling system. Through a syn-
thesis request to the (CL)S framework, production characteristics can be used
to intersect with the defined types of the algorithm components. The (CL)S only
selects those heuristics that are applicable to the given problem class. Available
problem classes in this exemplary implementation are flow shop and job shop.
After composing the algorithms, they can be utilized to solve the given schedul-
ing problem and produce valid machine schedules. The synthesized algorithms
work as transition functions and transfer the given data object into an applicable
machine schedule. After scheduling, the makespan is calculated.

Further problem classes can be integrated by adding further possible pa-
rameter assignments and therefore extending the intersection types. By speci-
fying additional parameters, further β constraints can be realized, which may
exclude further heuristics because they are not applicable for the problem, or



6 Dominik MäckelΓ, Jan WinkelsΓ, and Christin SchumacherΓ

Γ = {
Scheduler: (String → String) ∩ (Algorithm ∩ shopClass → Scheduler(shopClass))

NEH: String ∩ (Algorithm ∩ FS)

FSDispatch: (String → String) ∩ (PriorityRule → Algorithm ∩ FS)

GifflerThompson: (String → String) ∩ (PriorityRule → Algorithm ∩ JS ∩ FS)

LPT: String ∩ PriorityRule

SPT: String ∩ PriorityRule

}

Fig. 2. (CL)S repository

include others because they require certain assumptions or additional data such
as deadlines.

Our defined (CL)S repository is shown in Fig. 2 and the solution tree cal-
culated by the (CL)S across all combinators of the repository is illustrated in
Fig. 3. The repository’s first combinator Scheduler of Fig. 2 is a wrapping base
module, which serves as the common target type for all synthesis requests. Ac-
cordingly, it is found on the first level of the solution tree (left square in Fig. 3).
As parameter shopClass (see Fig. 2) it receives information about the problems’
machine environment (α-component). Starting from the base module, the differ-
ent algorithms for flow shop and job shop problems of the type Algorithm are
now available according to the parameter shopClass. By concretizing the param-
eter when calling the synthesis, the number of applicable combinators is reduced
in such a way that only the algorithms for the corresponding problem class can
be used. This is done by using the parameter also as an intersection type of the
base module and thus an intersection with combinators of other problem classes
is no longer possible.

Fig. 3. (CL)S solution tree for flow shops

The first two algorithms NEH and FSDispatch in our implementation can
only be applied to flow shops while the algorithm of Giffler & Thompson can
be applied to job shops, which implies that it can also be used for flow shops
because flow shops are a real subset of job shops as shown in Fig. 4.
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Fig. 4. Relationships between considered scheduling problem classes

The algorithms FSDispatch and GifflerThompson additionally require a dis-
patching rule. Fig. 3 shows the reuse of these dispatching rules SPT and LPT
for FSDispatch and GifflerThompson. This shows again one advantage of such a
composing method. It is easily possible to integrate and combine new algorithms,
heuristics, and dispatching rules into the tool by inserting them into the reposi-
tory as combinators with corresponding intersection types. New components can
reuse already existing ones. Individual components can also be replaced by other
possibly better performing components without having to replace them individ-
ually at all points. Furthermore, the derivation graph in Fig. 3 shows similarities
and differences between algorithms in the sense that the use of similar compo-
nents is immediately recognizable. The procedure of disassembling an algorithm
into reusable components and representing them as (CL)S-combinators is now
explained in detail using the example of the Giffler & Thompson algorithm.

5 Results

To show that the same implementation of an algorithm can be effectively used
for different machine environments, the Giffler & Thompson algorithm and its
implementation is shown in Alg. 1.1 has been applied to a flow shop and a
job shop problem. The selection of the dispatching rule takes place inside the
dispatching rule combinator that has been selected by CLS and parsed into the
program code at this point. The dispatching rule is varied by replacing the code
at this point.

To give a concrete example, processing times in Tab. 1 have been randomly
generated from a triangular distribution with lower limit 5s, upper limit 15s,
and mode 8s. For the job shop problem, also the processing order has been
randomized across the stages as shown in Tab. 2. The entry ”4” in row ”S1” and
column ”job 1” indicates that job 1 has to be processed on the first stage (S1) in
the fourth production step. Before, the job has to visit stage 3, then stage 2 and
stage 2 in exactly this sequence. The calculated job shop schedule of the Giffler
& Thompson algorithm with LPT-rule is shown in fig. 5.

Since the algorithm was not particularly designed for flow shop problems, it
is reasonable to compare its result with the NEH heuristic. The two schedules
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Job: 1 2 3 4 5 6 7 8 9 10

S1 6 12 8 9 10 8 9 9 11 7

S2 7 11 7 7 9 7 10 9 10 6

S3 8 12 11 8 9 8 12 13 7 9

S4 9 12 11 7 6 9 10 8 11 10

Table 1. Generated processing times

Job: 1 2 3 4 5 6 7 8 9 10

S1 4 1 4 3 4 4 1 3 2 3

S2 3 3 1 4 1 2 2 2 3 1

S3 1 2 2 1 3 3 4 4 4 4

S4 2 4 3 2 2 1 3 1 1 2

Table 2. Order for job shop production

Job Shop : G&T LPT

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

J2 J7 J3 J5 J9 J8 J10 J6 J4 J1

J9 J2 J7 J8 J3 J5 J6 J10 J4 J1

J8 J2 J9 J5 J7 J3 J10 J6 J4 J1

J3 J5 J2 J7 J9 J8 J6 J1 J10 J4

Cmax

Fig. 5. Jop shop schedule with Giffler & Thompson

are shown in Fig. 6. As expected, the NEH heuristic creates a better schedule
than the Giffler & Thompson algorithm. It is worth mentioning that Giffler &
Thompson created a valid schedule that can keep up with algorithms specially
designed for flow shop algorithms and can therefore be for example used as a
starter solution for an iterative algorithm or it can be used if no better solution
is available. In addition, Giffler & Thompson algorithm can be executed with
different priority rules. To execution of the algorithm with different priority rules
as input parameters lead to multiple solutions, the planner team can choose from.
The benefit is not having to implement an algorithm for flow shop problems as
the job shop algorithm can already handle it.
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Flow Shop : NEH

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

J1 J10 J6 J3 J7 J2 J9 J4 J8 J5

J1 J10 J6 J3 J7 J2 J9 J4 J8 J5

J1 J10 J6 J3 J7 J2 J9 J4 J8 J5

J1 J10 J6 J3 J7 J2 J9 J4 J8 J5

Flow Shop : G&T LPT

J2 J7 J9 J8 J3 J5 J10 J6 J4 J1

J2 J7 J9 J8 J3 J5 J10 J6 J4 J1

J2 J7 J9 J8 J3 J5 J10 J6 J4 J1

J2 J7 J9 J8 J3 J5 J10 J6 J4 J1

Cmax,NEH Cmax,G&T

Fig. 6. Comparison of flow shop schedules with NEH and Giffler & Thompson
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6 Conclusion

In this paper, we presented a repository for machine scheduling algorithms using
the (CL)S, a framework that can generate algorithms automatically and to create
solutions that are specially tailored to a previously specified problem. We used
this framework for the problem area of machine scheduling in order to solve flow
shop and job shop problems with SPT, LPT, NEH and Giffler & Thompson.

We have classified scheduling algorithms and mapped them as components in
a (CL)S repository. Through componentization, different algorithms can be inte-
grated into a framework via a uniform interface. This makes it easy to generate
different algorithmen to scheduling problems. The recombined algorithms gener-
ate valid schedules according to their functionalities. Algorithms can be defined
for various problem classes and constraints. According to the synthesis request,
only those algorithms are recombined that apply to the current problem.

The shown concept is not limited to constructive algorithm as presented
in this study and can also be applied to any iterative metaheuristic in further
studies if the given data object already contains a constructive start solution.
Concatenations of different constructive and iterative heuristics are conceivable
as well. Also, extensions of other objective functions are possible.
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