
Comparison of priority rules, machine allocation, and
stage allocation strategies for hybrid flow shop instances
using combinatorial logic and a standard trace format

Dominik Mäckel1[0000−0002−7866−7927], Benedikt Kordus2[0009−0006−7432−0332], and
Christin Schumacher3[0000−0002−9847−0443]

1 TU Dortmund University, Institute of Transport Logistics, Germany
dominik.maeckel@tu-dortmund.de

2 TU Dortmund University, Institute of Transport Logistics, Germany
bendikt.kordus@tu-dortmund.de

3 TU Dortmund University, Institute of Transport Logistics, Germany
christin.schumacher@tu-dortmund.de

Abstract. The configuration of heuristics strongly affects the resulting objective
function values for given problem instances. Finding the most suitable algorithm
components is essential for efficient production scheduling. This paper aims to au-
tomatically compare and combine different priority rules, machine allocation, and
stage allocation strategies on hybrid flow shop instances with different sets of real-
world constraints. To test and tune algorithm configurations and parameters for
scheduling problems, an approach with combinatorial logic using the combinatory
logic synthesizer is applied. To automatically test scheduling instances, the trace
formats in the literature are first reviewed. A trace format is proposed to harmonize
the data sets for a large number of beta constraints. In the second step, 32 construc-
tive heuristic configurations are automatically constructed using componentization
and recombination with four priority rules, four machine assignment strategies, and
two-stage assignment strategies in a general framework of a constructive heuristic.
Finally, three sets of test instances with different numbers of jobs by Wittrock [1],
Naderi et al. [2], and Ruiz et al. [3] are used to evaluate the resulting constructive
heuristics.

Keywords: priority rules · machine allocation · stage allocation · constructive
heuristics · makespan · algorithm synthesis

1 Introduction

To meet the diverse planning requirements of different industrial environments and
to provide assistance systems for planners, most algorithms for scheduling software are
currently built as custom solutions. The selection and composition of heuristics strongly
affect the scheduling results and key performance indicators in the use cases of scheduling.
To optimize production processes and scheduling efficiency, we need to provide flexible
software tools for job scheduling.

The objective of this paper is to develop a framework that combines and compares dif-
ferent priority rules, machine allocation, and stage allocation strategies on hybrid flow shop
instances. Therefore, the paper first proposes a unified way of representing instances for
hybrid flow shop problems with different beta constraints. Second, constructive heuristics
are compared for hybrid flow shops with unrelated machines and the makespan objective.
Jobs are allowed to skip stages. The heuristics are generated from each combination of
a much smaller collection of rules and strategies using algorithm synthesis. The synthesis

framework for algorithm compositions can be easily extended by adding new strategies that
are automatically used in the existing framework. The developed algorithm components
are compared by using five data sets. Evaluations show which combination of algorithms
performs best on the data sets. First, a literature review of existing datasets for (hybrid)
flow shops is conducted. The trace formats used in these data sets are examined and used
to create a new and flexible trace format for scheduling. Then, three instances from Wit-
trock [1], Ruiz et al. [3], and Naderi et al. [2] are converted into the new trace format and
are automatically tested using componentization of algorithm components and program
synthesis.

2 Literature review

The following table 1 gives an overview of the data sets containing (hybrid) flow shop
problems found in the literature. The Graham notation column largely follows the prob-
lem notation introduced by Graham et al. [4] with extensions made by Ruiz et al. [3] and
Pinedo [5]. Data selected for the evaluation is marked in bold face. The machines here are
either all the same (PM) or have different job-specific processing times (RM). Among the
beta constraints, jobs are allowed to skip stages (skip). Further beta constraints included
in the data remain unused. This overview clearly shows an increase in the complexity of

Table 1: Data sets found in the literature
Year Author(s) Graham notation # Instances
1960 Heller [6] F10 | | Cmax 2
1978 Carlier [7] Fm | | Cmax 8
1988 Wittrock [1] FHm, ((PM (k))mk=1) | block, lag | Cmax 6
1993 Taillard [8] Fm | prmu | Cmax 120
1995 Reeves [9] Fm | prmu | Cmax 126
1998 Demirkol et al. [10] Fm | | Cmax; Fm | | Lmax 40
2001 Néron et al. [11] FHm, ((PM (k))mk=1) || Cmax 271
2008 Ruiz et al. [3] FHm, ((RM (k))mk=1) | skip, rm, lag, Sjk, Mj , prec | Cmax 12288
2010 Urlings [12] FHm, ((RM (k))mk=1) | | Tmax, Cmax 720
2010 Naderi et al. [2] FHm, ((PM (k))mk=1) | skip, Sjk | Cmax 960
2015 Vallada et al. [13] Fm | prmu | Cmax 480
2017 Pan et al. [14] FHm, ((PM (k))mk=1) | ddw | Tmax, Emax 3060
2020 Lang et al. [15] FH2, (P41, P52) | fmls, prmu | Tmax, Cmax 4
2022 Missaoui et al. [16] FHm, ((PM (k))mk=1) | Sjk, ddw | Tmax, Emax 9180
2022 Laroque et al. [17] FHm, ((RM (k))mk=1) | Mj , batch, prec, skip, fmls | Cmax 20

the problems, with hybrid flow shops becoming increasingly important, and an increase in
the number of beta constraints used. Therefore, the reusability of algorithms and data sets
for hybrid flow shops with different constraints would be of great benefit for the compara-
bility of results on newly developed heuristics. CLS is a program synthesis framework that
enumerates all possible combinations with the guarantee of completeness. All results of the
inhabitation are valid compositions. It has been used in the past for several applications,
such as the automated generation of construction plans [18] and algorithm decomposition
[19].

3 Trace format

The trace format defines how an instance is stored, such as the file format, the layout
of the file, and the rules used to extend this layout in case of new beta constraints that
need to be added. Two main types of trace formats for hybrid flow shop problem data sets
are found in the literature. In addition, there are unique trace formats used, for example,
by Wittrock [1] or Naderi et al. [2].

The first group of trace formats combines a large job table, which contains all the
job-dependent information, with smaller auxiliary tables that provide additional details
that are not job-dependent. This trace format is used, for example, by Lang et al. [15] or
Laroque et al. [17]. The main problem with this type is the job dependency. If we consider
beta constraints that depend on two or more jobs, such as sequence-dependent setup times,
the job table becomes exponentially large with the number of jobs because each job needs
a value for at least every other job.

The second format was already used by Taillard [8] but is still applied by Ruiz et al.
[3], Urlings [12], and Missaoui et al. [16]. This type uses separate tables for each type of
data, for example, the processing times of jobs on machines are represented in one table,
while the values for each beta constraint are stored in separate tables, sometimes even more
than one per constraint. The main drawback here, especially on quadratic tables, is the
inconsistent usage of rows and columns where the order of reading is undefined. However,
the weakness of the latter type can be fixed by introducing the following rules to define
the new trace format.

– An instance is a text file where the first line is the number of jobs and the second line
is the number of machines in each stage separated by a space.

– The data is given starting with the third line. Each data group starts with a line
containing the full data type name, written in ’SHOUTING_SNAKE_CASE’, followed
by a data line or table.

– Scalar- and one-dimensional data can be written on one line. Data indexing on two
dimensions, like jobs and machines for processing times, require tables. In this case,
the rows correspond to the first index and the columns correspond to the second index.
Three-dimensional data is split at the first index into two-dimensional tables.

– Machine numbers are continuously counted across stages, truncating indexation on the
stage-machine-pair into one dimension. Instead of 2 stages with 2 machines each, the
table would only consider 4 machines, resulting in a dimension reduction and the ability
to display normally four-dimensional data.

Fig. 1: Example data in the trace format, including additional explanation in gray.

5 Five jobs.
3 3 Two stages with 3 machines each.
PROCESSING_TIMES Processing times indexed by
74 35 45 0 82 machine (rows 1-6)
25 22 93 0 54 and job (column 1-5).
47 89 36 0 95 Processing time zero
19 75 0 55 0 reflects stage skipping.
66 93 0 87 0
78 11 0 32 0
SKIP
0 0 0 1 0 Skip constraint indexed by
0 0 1 0 1 stage (rows 1-2) and job (column 1-5).

An example trace of a two-stage hybrid flow shop with five jobs and three machines on
both stages from the data set by Ruiz et al. [3] including processing times and skip data
converted into the new format is given in Figure 1. Additional explanation is given in gray,
which is not part of the trace.

4 Synthesis of scheduling algorithms

The test conducted in this paper uses four different priority rules to determine the
initial order of the jobs to be assigned in the first stage:

– Shortest/Longest processing time first (SPT/LPT): Sort jobs in ascending/descending
order of average processing time on the first stage.

– Johnson’s rule (JNS): Schedules jobs according to their minimum processing times
across all stages. If the lowest average processing time across all machines on a stage
is found in the first stage, the job is placed at the beginning of the priority queue,
otherwise at the end.

– Random (RND_O): Assign jobs in random order.

Four machine assignment strategies are tested to distribute the jobs among the machines:

– FirstFit (FF): Assign the job to the first machine with a possible start time earlier
than on machine 0.

– Earliest starting time (EST_M): Assign the job to the machine that is available first.
– Earliest completion time (ECT_M): Assign the job to the machine that can finish first.
– Random (RND_M). Assign the job to a random machine.

To assign jobs to machines in the following stages, two assignment strategies are tested:

– Earliest starting time (EST_S): Assign the job that can start on a machine first.
– Earliest completion time (ECT_S): Assign the job that can finish on a machine first.

ECT_S aims at dealing with unrelated machines and sequence-dependent set-up times
and reducing the completion time, while EST_S minimizes the machine idle times. The
algorithm components are combined using program synthesis by applying the Combinatory
Logic Synthesizer (CLS) [20]. CLS is a type-based framework for software synthesis from
components declared in a repository. Each component is assigned a unique semantic type
as well as an abstract supertype such as "Machine allocation strategy". CLS automatically
selects fitting components of such type by answering the inhabitation question Γ ⊢ e : τ :
Does there exist a composition e of the algorithm components in the repository Γ that
constructs a scheduling heuristic τ? CLS automatically composes the algorithms to run on
the given instances. Figure 2 displays the three needed algorithm components (supertypes)
and the sets of available components, of which one has to be selected for each of the 32
possible combinations.

Fig. 2: Possible algorithm components in the repository.

heuristic

Priority rule:

Machine allocation strategy:

Stage allocation strategy:

{ SPT, LPT, JNS, RND_O }

{ FF, EST_M,ECT_M, RND_M }

{ EST_S, ECT_S }

5 Computational evaluation

Using CLS as well as the data by Ruiz et al. [3], Naderi et al. [2] and Wittrock [1]
the 32 possible combinations of the described algorithm components are evaluated. On the
data sets by Ruiz et al. [3] and Naderi et al. [2], those with four and eight stages and two
machines per stage were chosen to match the data set by Wittrock [1] with three stages
and three machines per stage best. All data sets are evaluated individually since the data
characteristics, for example, processing times, vary between the sets. First, the second-
stage allocation strategies are compared. It can be shown by paired confidence intervals
that ECT_S dominates EST_S with a confidence level of 95% comparing their ranks for
the data set by Ruiz et al. [3] while EST_S dominates ECT_S for the other sets. Among
the machine allocation strategies, FirstFit dominates the other strategies and RND_M
performs worst on all data sets except for Wittrock’s. Here, FirstFit outperforms EST_M
and the difference between RND_M and ECT_M was not significant. Among the priority
rules, LPT performs worst on all tested instances. Johnson’s algorithm dominates LPT,
SPT, and RND_O on the data by Ruiz et al. [3] while on the data by Naderi et al. [2]
significant dominance could only be proven against LPT and RND_O. The results show
that the best combination of algorithm components heavily depends on the data, which
strengthens the importance of automatic composition and evaluation of different solution
methods. The used data sets and computational results are available at [21].

6 Conclusion and Outlook

In this paper, an overview of benchmark data for hybrid flow shop problems has been
given. For reusability and comparability of results in heuristics development, a unified
trace format has been proposed. Data of up to four dimensions can be displayed. Current
limitations could be extended in the future to also use the trace format for job shop and
open shop problems. A variety of solution strategies including priority rules, machine, and
stage allocation strategies have been applied to synthesize 32 different constructive heuris-
tics for solving three traces from the literature using the Combinatory Logic Synthesizer.
The synthesis of scheduling algorithms proved to be a useful tool for testing combinations
of different scheduling algorithm components with easy extendability which simplifies the
evaluation process also for further research. In the future, more algorithmic components
and also metaheuristics can be integrated into the framework.

References

[1] Robert J. Wittrock. “An Adaptable Scheduling Algorithm for Flexible Flow Lines”.
In: Operations Research 36.3 (1988), pp. 445–453.

[2] B. Naderi, Rubén Ruiz, and M. Zandieh. “Algorithms for a realistic variant of flow-
shop scheduling”. In: Computers & Operations Research 37.2 (2010), pp. 236–246.

[3] Rubén Ruiz, Funda Sivrikaya Şerifoğlu, and Thijs Urlings. “Modeling realistic hybrid
flexible flowshop scheduling problems”. In: Computers & Operations Research 35.4
(2008), pp. 1151–1175.

[4] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G.Rinnooy Kan. “Optimization
and Approximation in Deterministic Sequencing and Scheduling: a Survey”. In: Dis-
crete Optimization II. Vol. 5. Annals of Discrete Mathematics. Elsevier, 1979, pp. 287–
326.

[5] Michael L Pinedo. Scheduling. Vol. 29. Springer, 2012.

[6] J. Heller. “Some Numerical Experiments for an M× J Flow Shop and Its Decision-
Theoretical Aspects”. In: Operations Research 8.2 (1960), pp. 178–184.

[7] Jacques Carlier. “Ordonnancements à contraintes disjonctives”. In: RAIRO - Opera-
tions Research - Recherche Opérationnelle 12.4 (1978), pp. 333–350.

[8] E. Taillard. “Benchmarks for basic scheduling problems”. In: European Journal of
Operational Research 64.2 (1993). Project Management anf Scheduling, pp. 278–285.

[9] Colin R. Reeves. “A genetic algorithm for flowshop sequencing”. In: Computers &
Operations Research 22.1 (1995), pp. 5–13.

[10] Ebru Demirkol, Sanjay Mehta, and Reha Uzsoy. “Benchmarks for shop scheduling
problems”. In: European Journal of Operational Research 109.1 (1998), pp. 137–141.

[11] Emmanuel Néron, Philippe Baptiste, and Jatinder N.D Gupta. “Solving hybrid flow
shop problem using energetic reasoning and global operations”. In: Omega 29.6 (2001),
pp. 501–511.

[12] Thijs Urlings. “Heuristics and metaheuristics for heavily constrained hybrid flowshop
problems”. PhD thesis. Universitat Politècnica de València, 2010.

[13] Eva Vallada, Rubén Ruiz, and Jose M. Framinan. “New hard benchmark for flowshop
scheduling problems minimising makespan”. In: European Journal of Operational Re-
search 240.3 (2015), pp. 666–677.

[14] Quan-Ke Pan, Rubén Ruiz, and Pedro Alfaro-Fernández. “Iterated search methods
for earliness and tardiness minimization in hybrid flowshops with due windows”. In:
Computers & Operations Research 80 (2017), pp. 50–60.

[15] Sebastian Lang, Tobias Reggelin, Fabian Behrendt, and Abdulrahman Nahhas. “Evolv-
ing Neural Networks to Solve a Two-Stage Hybrid Flow Shop Scheduling Problem
with Family Setup Times”. In: Hawaii International Conference on System Sciences
53 (2020), pp. 1298–1307.

[16] Ahmed Missaoui and Rubén Ruiz. “A parameter-Less iterated greedy method for
the hybrid flowshop scheduling problem with setup times and due date windows”. In:
European Journal of Operational Research 303.1 (2022), pp. 99–113.

[17] Christoph Laroque, Madlene Leißau, Pedro Copado Méndez, Christin Schumacher,
Javier Panadero, and Angel Juan. “A Biased-Randomized Discrete-Event Algorithm
for the Hybrid Flow Shop Problem with Time Dependencies and Priority Con-
straints”. In: Algorithms 15(2):54 (Feb. 2022).

[18] Lisa Theresa Lenz, Julian Graefenstein, Jan Winkels, and Mike Gralla. “Smart Fac-
tory Adaptation Planning by means of BIM in Combination of Constraint Solving
Techniques”. In: Proceedings of the International Council for Research and Innovation
in Building and Construction (CIB), World Building Congress 2019 – Constructing
Smart Cities (2019).

[19] Dominik Mäckel, Jan Winkels, and Christin Schumacher. “Synthesis of Schedul-
ing Heuristics by Composition and Recombination”. In: Optimization and Learning.
Cham: Springer International Publishing, 2021, pp. 283–293.

[20] Jan Bessai, Andrej Dudenhefner, Boris Düdder, Moritz Martens, and Jakob Rehof.
“Combinatory Logic Synthesizer”. In: Leveraging applications of formal methods, ver-
ification and validation. Vol. 8802. LNCS sublibrary. SL 1, Theoretical computer
science and general issues. Heidelberg: Springer, 2014, pp. 26–40.

[21] Dominik Mäckel, Benedikt Julian Kordus, and Christin Schumacher. Data from:
Comparison of priority rules, machine allocation, and stage allocation strategies for
hybrid flow shop instances using combinatorial logic and a standard trace format.
Zenodo. doi: 10.5281/zenodo.10100868.

https://doi.org/10.5281/zenodo.10100868

	Comparison of priority rules, machine allocation, and stage allocation strategies for hybrid flow shop instances using combinatorial logic and a standard trace format

