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Abstract— Machine learning components are becoming pop-
ular for the automotive industry. More and more data sets
become available for training machine learning components. All
of them provide ground truth labels for images. The labeling
process is expensive and potentially error-prone. At the same
time, label correctness defines the business value of a data set.
In this paper, we use N -Version approach to assess the label
quality in a data set. The approach combines N state-of-the-art
neural networks and aggregates their results in a single verdict
using majority voting. We analyze this majority vote against the
ground truth label and compute the percentage of disagreeing
pixels along with other metrics, enabling the automated and
detailed analysis of label quality on data sets. We evaluate our
methodology by classifying the BDD100K drivable area data set.
The evaluation shows that the approach identifies misclassified
scenes or inconsistencies between label semantics for similar
scenes.

Index Terms—Machine Learning Validation, Data Set Value
Assessment, N-Version Redundancy.

I. INTRODUCTION

Robot cars, or fully autonomous vehicles (FAV), that trans-
port people and goods are a dream that has been fueling dif-
ferent areas of research for decades. Some prototypes made
remarkable progress, for example, the Bertha-project [1] or
the Waymo project1. Those prototypes have in common that
they rely on machine learning algorithms in components
responsible for world perception. Andrej Karpathy, current
Director of AI at Tesla, identified a new trend in the way
we build software, which he called Software 2.02. As neural
networks have a constant processing time for segmenting
an image and often beat rule-based systems [2], they are
mainly used as an intelligent ingredient for computer vision
components. Software 2.0 is all about tuning the data sets
instead of programming the algorithms. The question how
engineers verify the safety of autonomous systems that use
such components is still open. Current approaches [3]–[5]
suggest that a test data set of relevant situations is constructed
manually. An autonomous driving function has to demon-
strate an acceptable performance during the accreditation
process instead of a formal verification.

Koopman et al. [6], [7] make a clear point, that testing
alone will not demonstrate the safety of an intelligent system

1https://waymo.com
2https://medium.com/@karpathy/software-2-0-a64152b37c35

in the automotive sector. In addition, they highlight the
conflict with the current practice that assumes any part
of a system as unsafe as long as a verification does not
demonstrate convincingly safety. Given the fact that a car
drives around in an open world, it is impossible to base this
safety demonstration on an enumeration of all situations the
car is going to encounter. Koopman et al. argue that in a
certification process it is therefore insufficient for a test oracle
to only judge the segmentation results of the neural networks
for a fixed set of training situations. Instead, they bring up
the argument that the only chance for making the used neural
network safe is longer training, better architectures or better
input data. All three steps are part of the new Software 2.0
trend and do not match traditional software quality assurance.

Major companies paired up with universities releasing
benchmark data for tackling the challenge of better neu-
ral networks (e.g. AppolloScape [8], BDD100K [9] and
Cityscapes [10]). See [11], [12] for two surveys of other
benchmarks. The main value proposition in these benchmarks
is that they provide images but along with suitable labels
serving as a teacher for learning the image segmentation. The
Cityscape data set alone consumed time in the magnitude of
410 entire days (5.000 ∗ 90min + 20.000 ∗ 7min) for the
labeling of the images. This is a major investment often not
feasible for a single research group.

Reducing the cost of labeling is a key aspect for a
research project that aims to introduce a new data set. Hence,
the research group behind BDD100K developed scalable
annotation tooling that supports the user in the task of
annotating the images in the benchmark. One consequence
of these publicly available data sets is a gold rush for the
best neural network getting the best recall percentage on
those data sets. A substantial amount of research today
addresses better training and architectures (e.g. [13]–[17])
improving the achieved results on a given data set (c.f.
Semantic Segmentation on Cityscapes test3). Surprisingly,
very few publications discuss the relationship between data
sets and suitability for reproducing the real world. While for
every newly introduced data set it is demonstrated that more
weather situations, more complex scenes, or simply more
samples are provided, and that after training a network’s

3https://paperswithcode.com/sota/semantic-segmentation-on-cityscapes



prediction matches the labelling, the quality of labels and
its influence on a network’s performance in the real word is
usually not discussed.

To the best of our knowledge, no uniform metric for
measuring the quality of input labels for training an artificial
intelligence component currently exists. From our point of
view, this metric must have two dimensions: Label consis-
tency and correctness within one data set for ensuring that
the teacher has a uniform voice during training and suitability
of the input data set for reproducing the real world.

In this paper, we use the n-version methodology to assess
the label quality regarding consistency and correctness. The
n-version design methodology [18] is used for detecting
errors by increased redundancy in the design phase. The
wisdom of the crowd has been successfully applied in other
research areas, e.g. [19], [20]. We demonstrate and evaluate
how the knowledge of different neural networks can be
combined with majority votes to assess label correctness
and consistency. Moreover, we show how a group of neural
networks can pair up for creating a baseline for a potential
replacement of an inconsistent label. The approach is eval-
uated on the drivable area detection challenge part of the
BDD100K [9] data set.

Potential Impact. For this paper, we just assess label cor-
rectness and consistency using the n-version design method-
ology. The results we obtained with this methodology on
the BDD100K data set are promising. A potential practical
application for the method may be the identification of
challenging situations in data streams: Whenever there is
a sequence of images in the online data that leads to a
disagreement quote above a predefined threshold between the
neural networks, this scene should be recorded. This way,
the uninteresting scenes from test drives are filtered out and
the interesting scenes can be added to the training data after
manual labeling.

The number of encountered scenes allows to assess how
good a given training data set is suitable to reproduce the
real world over time. Koopman et al. requested that not only
predefined test scenarios are added to the training data set.
But extending the training data set with recorded situations
from a test car driving in the real world should lead to a
decreasing rate of challenging situations identified in new
test drives. This marks the point in time the training data set
starts to saturate with sufficient scenes for modeling the real
world.

The number of encountered challenging situations in a
given time period or on a given distance might be used as
a metric for the suitability of a data set to model the real
world as second dimension of the quality metric. Moreover,
the combined knowledge from multiple neural networks
might become the missing test oracle in the open world for
monitoring intelligent components in the automotive industry.

Related Work. B-Snakes have been demonstrated suitable
for detecting lanes by Wang et al. [21] presenting good results
using the CHEVP algorithm. Derivations of this approach are
widely spread in literature before neural networks appeared.

First, we tried to reuse them as an algorithmic test oracle
instead of majority voting, but had to give up as guessing
parameter is not feasible for arbitrary cases [22].

For faster navigation in large image databases, Hornauer
et al. [23] presented a query approach for selecting similar
images fast from a database. This might be useful during
debugging of neural networks predictions for finding similar
images and comparing the labeling of situations our approach
identifies to be tricky.

Augmentation is often used for increasing the training
label amount in a data set artificially. Prakash et al. [14]
present Structured Domain Randomization, a technique that
preserves the context of the image during the augmentation
phase outperforming normal Domain Randomization. Such
optimizations are not yet used during our training phase but
might strengthen the prediction results.

Outline. Section II describes the idea for n-version valida-
tion. The concrete implementation follows in Section III.
Results of the evaluation are presented in Section IV. Finally,
Section V concludes the paper and outlines future work.

II. METHOD

In this section, we first present our approach for automati-
cally identifying images with potentially wrong ground truth
labels. Then, we describe the high-level architecture used
for implementation and finally the classification targets we
are looking for in the data set, inspired by scenes we have
analyzed in a prestudy.

When we started this research project, we were interested
in neural network prediction correctness. While skimming
through images with low predicted intersections over union
(IOU), we found out that they had different labels for scenes
compared with similar images in the dataset. For example, the
images in Figure 2 are similar scenes that are not all labeled
in a consistent way. This inconsistency has different effects
on the predicted label that harm the IOU results. Therefore,
we shifted our focus to assessing the label correctness and
consistency automatically. The task at hand is implementing
an expert system that is able to segment an image into
different features with reliable and constant performance.

A. Approach and Architecture

In the presented case, we are interested in segmenting a
given image into three label classes: background, ego drivable
area and other drivable area. Humans tend to make mistakes
in the task execution. To overcome them, one strategy is
to hand out the same task to N persons and aggregate all
those N results as has been done for labeling the Cityscapes
data set with fine-grained annotations [10]. This redundancy-
based strategy exploits the smaller likelihood of making the
same mistake repeatedly, if a task is assigned to different
individuals. It is called N -version redundancy. We will use
the N-version redundancy to exploit the knowledge of our
experts, the neural networks predicting a segmentation. This
aggregated prediction can be compared to the ground truth
label and therefore serves as a quality gate. If the prediction
does not fit the ground truth label, a potentially wrong ground
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Fig. 1: Segmentations computed by three different neural networks (DeepLabv3, FCN, PSPNet) are aggregated via pixel wise
majority voting. For pixels where the ground truth and majority class disagree, the number of votes for the majority class
is indicated in the ’strength of disagreement’ image. In case of no disagreement, the respective pixel is black, indicating
no disagreeing votes. In the case of all neural networks disagreeing with the ground truth, the resulting pixel color is
white. Accordingly, one disagreeing vote is represented as dark grey, two votes as light grey. For the images representing a
classification, black represents the background class, grey represents the vehicle’s ego lane, and white represents other lanes.

truth has been identified. For now, a human has to validate
the result manually.

Figure 1 shows the approach we applied for merging the
predictions of different neural networks into a single result.
On the left are the different implementations, each executing
a single segmentation task. In the center is the majority
voting component, calculating the aggregated label and how
many neural networks have voted for the pixel. Each pixel
is classified as the class with most votes. On the right is the
ground truth label represented and the result of the compar-
ison between the ground truth and the aggregated label. We
call the resulting metric the strength of disagreement. Next,
we define the different classification groups.

B. Classification of Label Quality

In total, we defined four classification classes after a
prestudy. One for positive match and three for redefining
disagreement. We evaluate them later in Table I:
Strong Agreement. This group represents a strong agree-
ment between ground truth and the aggregated prediction.

An image classified in this group has at least 93.5% of
all pixels classified overlapping between both labels. This
threshold is the result of analyzing a histogram with percent
of disagreeing pixel in the images. There is always some
disagreement around the object boundaries that led to a
cluster in the section of up to 6.5% disagreeing pixel.
Mostly Background. A common situation for which an
image is labeled as mostly background is shown in the left of
Figure 2. The car is positioned closely behind and between
other cars. Therefore, the lanes are only partially visible.
The classification rule for ’mostly background’ identifies
many pictures that are similar, but contain labeled drivable
areas in the ground truth (c.f. right of Figure 2). Therefore,
it is unclear what a correct learned result would be. We
divided this group into three categories: The ground truth
and the majority vote agree, the ground truth defines all as
background and the majority vote disagrees, and the majority
vote defines all as background but the ground truth does not.
Difficult Situations. When aggregating the majority vote
classification (see Figure 1), there are some areas for which

Fig. 2: Some traffic situations appear to be labeled inconsistently in the ground truth. The leftmost image is completely
labeled as background, even though lanes (and therefore drivable areas) are clearly visible. The center and the right image
show very similar situations, but do have parts labeled as drivable area (marked in pink).



the neural networks cannot find unanimous consent among
each other. These areas are apparently hard to classify for the
neural networks. This might either be due to the situation
being inherently difficult (low lighting, very unusual situa-
tion, etc.), or possibly due to similar situations being labeled
inconsistently in the training data. With three neural networks
and three classes in the segmentation, these situations will
usually manifest as 2 vs. 1 vote. The alternative, a three-way
tie, would require one network to label a pixel as background,
while the other two predict it to be the ego area, and other
area, respectively.
Swapped Drivable Areas. A lot of images rated with low
per-class IOU scores had the simple problem of judging
differently than the ground truth which drivable area is the
ego area and which is the area of other drivers. However,
the existence of this category is mostly an expression of
how difficult a binary classification is. The problem usually
occurs when the car is in the process of switching between
lanes. In this case, it is not clear when the area changes roles
between ego and other area, or whether at some point both
areas should be labeled as ego or other.

III. IMPLEMENTATION

This section introduces the three main components that
we used for evaluating the suggested methodology: An image
segmentation task, a set of prediction methods and a majority
voting procedure.

A. Segmentation Task: BDD100k Drivable Area

We use the BDD100K [9] data set, which introduces
the drivable area segmentation challenge. The full data set
consists of 100.000 labeled images. It is split into 70.000
training, 20.000 validation and 10.000 test images.

The images are labeled with three different classes: 1.
a drivable area for the ego vehicle, 2. additional drivable
area involving a lane change or interaction with other traffic
participants, 3. anything else. Since the test images do not
have any associated ground truth labels, we do not use them.
The networks are trained on the training images and the
classification is evaluated on the validation images.

We resized all images and labels from 1280x720 to a size
of 321x185 pixels to reduce computational resource needs.
The unusual width and height are the result of the size
limitations imposed by the PSPNet. Long et al. [13] have
shown, that downsizing images by a factor of 4 does not
harm the prediction capacity of a neural network significantly.
Therefore, this constraint is not a threat to the approach.

B. Neural Networks for Semantic Segmentation Predictions

We will use three different neural networks as the pre-
diction method in our N-version setup. The architectures
we use share a very similar structure. The first part is a
feature extractor, which computes general image features. As
a feature extractor, or backbone, we use the Resnet101 [15]
architecture in all neural networks. The second part of the
architecture uses these image features to form a prediction.
A common approach for this second part is to use non-local

information (context information) to improve the prediction
for each pixel.

The used networks are:
• a Fully Convolutional Network (FCN) [13]
• the Pyramid Scene Parsing Network (PSPNet) [16]
• the DeepLabv3 architecture [17].

Fully Convolutional Network. The fully convolutional net-
work we employ consists only of the backbone network, and
a head that uses the backbone features for straight forward
classification. The head consists solely of a convolution,
followed by BatchNorm [24], ReLU activation function, a
dropout layer, and a second convolution that outputs the
classification results. Therefore, it has no access to non-local
information.
Pyramid Scene Parsing Network. The PSPNet architecture
uses a multi-scale pooling approach to access global context
information. It employs four different scale factors: 1, 2,
3, and 6, for which the context features are generated. For
each scale factor s, the feature map generated by the feature
extractor is divided along height and width by the scale factor.
This way, s ∗ s different sub-areas are created. Max-pooling
is applied to each of them, generating between 1 and 36
different features, depending on the scale factor. The resulting
features are then up sampled to the size of the initial feature
map and concatenated with it. This way, the existing features
are enriched with information collected at the level of the
different sub-areas.
DeepLabv3 DeepLabv3 uses image-level features via global
average pooling. Additionally, it generates multi-scale fea-
tures via atrous convolutions, also known as dilated convolu-
tions. These are very similar to regular convolutions, except
that their field of view is larger, thereby giving access to non-
local features. For example, a 3x3 atrous convolution with
rate r = 3 inspects nine points on a 7x7 area. A regular 3x3
convolution (equivalent to an atrous convolution with r = 1)
also inspects nine points, but on a 3x3 area. As can be seen,
the number of required parameters is not increased. Only the
area from which the points are sampled is increased, thereby
allowing for non-local features, without changes in cost.

Both PSPNet and DeepLabv3 aggregate their non-local
features by concatenating them to the original image features.
They then produce a classification for each pixel by finishing
their architecture with a comparable structure used for the
head of the FCN architecture. Due to these differences,
each of the network solves the task at hand differently.
These differences are sufficient to qualify the approaches as
different solutions to the given problem, a requirement of
the N-version approach. Otherwise, structural errors might
be hidden by too much redundancy. The left part of Figure 1
shows an example of the different predictions produced by
the three networks for the same image.

C. Training Phase.

To train the neural networks, we use Zhao’s Pytorch [25]
implementation [26] of PSPNet [16], and the torchvision [27]
implementation of a version of a fully convolutional network



Category Classification rule Images
Strong agreement DisagRate<= 0.065 8488
MV: all BG,
GT disagrees

(BgRateMv >0.999)
and (DisagRate >0.0)

61

GT: all BG,
MV disagrees

(BgRateGt = 1.0)
and (DisagRate >0.0)

159

GT: all BG, MV agrees (BgRateGt = 1.0 )
and (DisagRate = 0.0)

295

Difficult situations DivVotes >= 0.15 792
Swapped Areas (DisagRate - SwappedDisag)

>= 0.01
256

TABLE I: Based on different measures, images are sorted
into categories. The first category represents images for
which the majority vote predictions mostly agree with the
ground truth. The second category contains images that have
been classified as mostly background by the majority vote
(MV), but do contain non-background labels in the ground
truth (GT). The next two categories contain images that are
labeled completely as background in the ground truth. The
majority voting result disagrees with this background label in
the first category, and agrees with it in the second one. Images
in the ’Difficult situation’ category have strong uncertainty in
the majority voting process, with larger parts of the image not
being unanimously agreed upon by the three models. The last
category contains images, for which the disagreement with
the ground truth sinks by at least 1% when swapping the area
labels in the majority vote prediction.

(FCN) [13] and DeepLabv3 [17]. Each of those networks is
instantiated with a Resnet101 [15], which is used as a feature
extractor. For preprocessing training images before feeding
them into the network, we used the transformation steps
included in Zhao’s project, i.e., random scaling, rotation,
Gaussian blur, horizontal flipping, and normalization via
mean and standard deviation. During the validation phase,
only the normalization was applied. For details on the re-
spective preprocessing parameters, see [26].

After every five epochs, we saved the current model
state and evaluate it on the validation data set. For each
architecture, we then chose the model with the highest mean
IOU on the validation set. This way, we selected one model
per architecture and used them in the majority vote method.
The code we used, including the specific hyperparameters
used for training each of the models, are available online.4

D. Majority Vote Procedure

This section introduces majority voting to combine the
predictions of the different neural networks into a single
prediction. We assume that sections of images that are
difficult to judge will receive varying predictions by different
neural networks, while simple-to-predict areas should receive
the same predictions. To distinguish these kinds of areas, we
aggregate the different predictions via majority voting. For
every pixel, we consider the class predicted by each neural
network. An eventual probabilistic prediction is flattened to a
single vote ignoring any uncertainty metric in the prediction.
A complex voting procedure respecting uncertainty might be
a vector for improving the approach. A vote is the class

4https://github.com/tudo-aqua/n-version-label-validation.git

Architecture Background Ego lane Other lanes Mean IOU
FCN 0.950 0.692 0.570 0.733
Deeplabv3 0.949 0.697 0.563 0.737
PSPNet 0.973 0.828 0.717 0.840

TABLE II: Per-class and mean intersection over Union
(IOU), as measured on the validation set, for the best models
within each of the three architectures. The best model was
determined by choosing the one with the highest mean IOU
on the validation set.

a network predicts. The resulting class with most votes is
called majority class. For a tie, the numerically lower class
is used as a tie-break. The numerically order of classes
is: background (0), ego area (1), other area (2). Hence,
background beats all areas and ego the other area in a tie.

To categorize the images (see Table I), we use different
measures. The ratio of background pixels in majority vote
(BgRateMv) is the percentage of pixels majority-predicted
to belong to the background class. The ratio of background
pixels in ground truth (BgRateGt) is the same for the ground
truth. The ratio of disagreeing pixels (DisagRate) is the
percentage of pixels that are different between the ground
truth and the majority vote prediction. The mean divergent
votes measure (DivVotes) is the mean number of votes
per pixel that do not agree with the majority class. The
swapped lanes disagreement (SwappedDisag) represents the
percentage of disagreeing pixels for swapped area labels.

IV. EXPERIMENT AND DISCUSSION

We have evaluated the majority vote method described in
Section II on the BDD100K drivable area data set. In this
section, we present the obtained results and discuss them. We
first describe network performance using IOU, then briefly
the obtained classification results and give two examples of
label inconsistency.
Setup. We trained three different network architectures on
the BDD100k drivable area data set, described in section
III-A. The resulting values of the IOU measure are presented
in Table II. The PSPNet architecture clearly outperforms
FCN and DeepLabv3. This might be caused by the PSPNet
architecture already using training parameters optimized for
use with the Cityscapes data set, which is rather similar to
the BDD100k data set. We did not perform any hyper param-
eter optimization for the FCN and DeepLabv3 architectures
provided by the torchvision package.
Results. Table I presents the results of the label classification.
From the 20.000 images in the validation set, roughly half
of them are classified by our rule. Only 8488 are classified
in the Strong Agreement class. Given the mean IOUs ranging
from 0.73 to 0.84 for the single networks, we are surprised
that around 42% of the aggregated prediction reaches an
accuracy greater 0.935. The implication is, that for 58% of
those pictures, a reliable prediction on the validation test
data has not been possible even for the aggregated vote.
The high number of unclassified labels points out, that the
few identified situations in the prestudy are not sufficient
to explain misclassifications completely. Further research is
required here.
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Fig. 3: On the left, we see a three lane one-way street labeled completely as drivable ego area in red. In the center a similar
street is labeled as three different lanes, blue marking other drivable area. In variation from the label, the complete street is
predicted by the networks as ego lane. On the right side, an inner roundabout lane has a large label for drivable ego area.
The group of networks identified some areas which are potentially not part of the ego roundabout lane marked in blue.

We found 515 instances that belong to scenes similar to
Figure 2. The results demonstrate that the inconsistency leads
to uncertainty in how labels should predict drivable areas in
this situation. Further, we could identify 792 images that are
hard to segment for the neural networks. Manual inspection
shows that different camera angels and sometimes obstacles
in the field of view might explain some of them. Further,
situations that are hard to predict due to lighting, shadows or
weather conditions end up in this class. This group creates
many insights as it provides hints for conditions making a
prediction system fail.

From the 256 instances in the swapped areas class, we will
discuss two examples that revealed questionable ground truth
labels. The first example is in the left and center columns of
Figure 3. Both images present a similar situation: A three lane
street, all lanes heading in the same direction. The neural
networks generated a comparable prediction for the scene,
but the ground truth labels do not. Therefore, the swapped
areas rule triggers on the center image. From our point of
view, the center image is more precisely labeled in the ground
truth than the image on the left. It seems the predictions from
the networks are stronger influenced from labels similar to
the one used in the left column. The majority label clearly
shows that the networks in the prediction do not consider the
other lanes as an option in such situations. This is a hint for
an inconsistency in the data set with potentially tremendous
effects for real world segmentation.

The second example, in the right of Figure 3, shows
the inverse case. For a lane in a roundabout the complete

area is marked as drivable by the ego vehicle. Somehow,
the networks could construct from the other ground truth
label sufficient evidence to conclude that the ground truth is
wrong. The majority voted label show that the other lanes
in the roundabout and the exit lanes are other drivable area.
We think, the networks made a prediction better than the
ground truth. Apparently, the weaker ground truth could not
dominate the learned effects through negative discrimination
during the training phase. With joint forces, the network
identified a potentially deadly mistake in segmenting the
roundabout situation.
Discussion. Overall, the obtained result proves that the pro-
posed method is suitable for guiding human attention during
the label development for a dataset. It constitutes a metric that
can be computed automatically and gives more insights in
the network performance than the IOU alone. Moreover, the
classification helps to get a better understanding of potential
inconsistencies and semantically wrong labels by showing
only problematic instances as demonstrated in the examples.
It is worth to investigate the unclassified images to learn more
about potential other sources of misclassification and extend
the classification rule set.
Threats to Concept Validity. If two networks perform very
similar, it could occur that the majority vote reduces to a
constant 2 vs. 1 situation, with two networks always overrul-
ing the third one. We validate our approach by computing
how often the networks agree with each other. FCN and
PSPNet agree on 96.3% of pixels, FCN and DeepLabv3
on 98.1%, and PSPNet and DeepLabv3 on 96.2%. This



shows that the two networks that have a similarly strong
performance (FCN and DeepLabv3) also tend to agree more
often in their predictions, which is to be expected. However,
the difference to the agreement with the PSPNet predictions
is not very large, so we do not believe that this should cause
any problems in the majority vote.

V. CONCLUSION AND FUTURE WORK

We show that aggregating the verdicts of different neural
networks is a suitable approach for identifying potential
inconsistencies between labels of similar features in a data
set, following the N -Version redundancy strategy. We imple-
mented the approach using 3 neural networks and evaluated
it on the BDD100K drivable area data set. The evaluation
goal is the classification of the data set into labels where the
aggregated prediction strongly agrees with the ground truth
label, where the image seems to be labeled as background
only, where the neural networks disagree on the verdict, or
where swapping the drivable areas in the ground truth label
leads to less disagreement.

The initial results demonstrate that the aggregated labels
of multiple predictions sometimes contain better knowledge
of the feature of interest in the label than the ground truth
labels. Only 42% of the 20.000 validation images reach
a strong agreement with the ground truth label. We could
further identify 515 images as background only, 792 images
as difficult for segmentation, and 256 instances that achieve
better IOU values after swapping the areas in the ground
truth. We show how examples from these buckets might be
used to find inconsistencies in the ground truth label.

In the future, such an approach might be used as a filter
for identifying complicated situations during test drives or
assessing the label quality of a new and unknown data set. We
are convinced that the label quality influences the monetary
value of a data set in the long term. From our point of
view, this assessment of existing labels is a first step towards
automated label repair because it can identify wrong labels
based on the learning progress of system components. The
missing technique for a fully autonomous approach is an
automated label correction. However, the majority voted label
might serve as a baseline for a corrected version.
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