Jaint: A Framework for User-Defined Dynamic
Taint- Analyses based on Dynamic Symbolic
Execution of Java Programs

Malte Mues®!, Till Schallauf®?2, and Falk Howar(®?

! Dortmund University of Technology, Germany,
malte.mues@tu-dortmund.de
2 Dortmund University of Technology, Germany

Abstract. We present JAINT, a generic security analysis for JAVA Web-
applications that combines concolic execution and dynamic taint analy-
sis in a modular way. JAINT executes user-defined taint analyses that are
formally specified in a domain-specific language for expressing taint-flow
analyses. We demonstrate how dynamic taint analysis can be integrated
into JDART, a dynamic symbolic execution engine for the JAVA virtual
machine in JAVA PathFinder. The integration of the two methods is
modular in the sense that it traces taint independently of symbolic an-
notations. Therefore, JAINT is capable of sanitizing taint information (if
specified by a taint analysis) and using multi-colored taint for running
multiple taint analyses in parallel. We design a domain-specific language
that enables users to define specific taint-based security analyses for JAVA
Web-applications. Specifications in this domain-specific language serve
as a basis for the automated generation of corresponding taint injec-
tors, sanitization points and taint-flow monitors that implement taint
analyses in JAINT. We demonstrate the generality and effectiveness of
the approach by analyzing the OWASP benchmark set, using generated
taint analyses for all 11 classes of CVEs in the benchmark set.

1 Introduction

Web-based enterprise applications are ubiquitous today and many of these ap-
plications are developed in JVM-based languages. The Tiobe index tracks the
relevance of programming languages. JAVA leads this ranking consistently (with
short periods of being ranked second) for the past 15 yearsﬂ Moreover, Apache
Tomcat is running Web-applications for over 5, 000 international companies with
a yearly revenue greater than one billion US Dollar each, according to data col-
lected by HG Insightsﬁ Therefore, security of Java Web-applications is of critical
importance and attacks on them are reported every single dayﬂ Though there is
no publicly available data on the exact distribution of breaches across different

3 https://www.tiobe.com/tiobe-index/
4 https://discovery.hgdata.com/product/apache-tomcat
® https://www.cvedetails.com/vulnerabilities-by-types.php

http://orcid.org/0000-0002-6291-9886
http://orcid.org/0000-0002-1769-3486
http://orcid.org/0000-0002-9524-4459

programming languages. Based on the market share of JAVA in the realm of en-
terprise applications, one can assume that a significant fraction of the reported
breaches exploits vulnerabilities of JVM-based Web-applications.

Many of the vulnerabilities tracked in the Common Vulnerability and Expo-
sures (CVE)E list pertain to the flow of information through a program from a
(potentially) malicious source to a protected sink. In modern Web-applications,
such flows almost universally exist as these applications receive inputs from (un-
trusted) users and, e.g., store these inputs in (protected) databases. These inputs
should pass sanitizing methods, e.g., for escaping of specific characters in a tex-
tual input or prepared and safe statements. Otherwise, attackers might use these
inputs maliciously to inject commands into SQL statements in an attack.

Taint analysis is a well-established technique for analyzing the data flow
through applications: Inputs are tainted and taint is then propagated along the
data flow. Critical sinks (i.e. databases) are monitored by taint guards ensur-
ing that no tainted data values reach the sink (c.f. [IIBIT423/24/25]). Otherwise
a security vulnerability is detected. Classically, taint analysis is either imple-
mented as a static analysis, over-approximating flow of taint (c.f. [27]), or as
a dynamic analysis, under-approximating taint flow by observing concrete pro-
gram executions (c.f. [I2]). The literature distinguishes data-flow taint, i.e., taint
that propagates from right to left sides of assignments, and control-flow taint,
i.e., taint is propagated through branching conditions to assignments in executed
branches (c.f. [24]). One can observe a close similarity to symbolic execution [25]:
(Data-flow) taint propagates like symbolic values, and (control-flow) taint cap-
tures path constraints of execution paths. However, this close similarity has not
yet been fully leveraged as the basis for an integrated analysis for JAVA.

In this paper, we present JAINT, a framework for finding security weaknesses
in JAVA Web-applications. The framework combines dynamic symbolic execu-
tion and dynamic taint analysis into a powerful analysis engine. This analysis
engine is paired with a domain-specific language (DSL) that describes the con-
crete taint analysis tasks, JAINT executes during one analysis run. It is the first
framework exploiting concolic execution for the dynamic but exhaustive explo-
ration of execution paths in JAVA Web-servlets while maintaining explicit multi
color taint marks on data values. This multi color taint allows the specification of
multiple taint analyses run in parallel tracking data flow from malicious sources
to protected sinks and monitoring potential security vulnerabilities. Moreover,
as taint marks and symbolic values are separate annotations, the framework
supports sanitization definitions on a taint color base making it more precise
than previous work using symbolic annotations as taint marks [II]. The com-
bination of dynamic symbolic execution and dynamic taint analysis results in
greater precision than can be achieved with classic static taint analysis methods
that are insensitive to most conditions on control flow. Moreover, for many of
the identified vulnerabilities, our analysis can produce request parameters that
exhibit a found vulnerability in a servlet. In contrast to purely dynamic taint
analysis techniques, our approach is exhaustive given that dynamic symbolic ex-

% https://cve.mitre.org

ecution terminates [I8]: it generates a set of request parameters for every feasible
execution path.

We have implemented JAINT as an extension of JDART [I§], a dynamic sym-
bolic execution engine for JAVA, and on top of JAVA PATHFINDER [13], a software
model checker for JAVA that is based on a custom implementation of the JAVA
virtual machine (JPF-VM). JAINT’s DSL for defining concrete taint analyses
(i.e., sources, sanitization methods and sinks) is designed on the basis of the Meta
Programming System (MPS). JAINT’s implementation is publicly available [20].
We evaluate JAINT on the OWASP benchmark suiteﬂ the current industrial
standard for comparing analysis approaches for JAVA Web-applications. All 11
CWEs in the OWASP benchmark suite can be specified in our domain-specific
language and JAINT analyzes the OWASP benchmark suite with a false negative
rate of 0% and a false positive rate of 0%, identifying all security vulnerabilities.

Related Work. Schwartz et al. [25] describe a formal theory for dynamic taint
propagation and discuss challenges in the implementation of an analysis com-
bining dynamic symbolic execution and dynamic taint analysis. Their focus is
mostly on memory representation problems for running the symbolic analysis in
a programming language that allows pointer arithmetic. Due to the design of the
JAVA virtual machine, these concerns are not relevant when analyzing JAVA byte
code. The formalization of taint analysis by Schoepe et al. [24] stresses the impor-
tance of a clear division of data-flow and control-flow based taint propagation.
From our point of view, this observation supports a separation of analysis meth-
ods: dynamic taint analysis and dynamic symbolic execution: Dynamic tainting
tracks information following the data flow path, e.g., through instrumentation
(c.f. [TIBT2TE/T7I2TI26/28]). Dynamic symbolic execution can be used for con-
trolling the program execution path with external inputs ensuring exhaustive
exploration of all paths.

Haldar et al. [T2] presented a dynamic tainting mechanism for JAVA propagat-
ing the dynamic taint along a single path. JAINT’s advantage over the approach
of Haldar, is the integration of single path propagation with dynamic symbolic
execution [2I6] for exhaustive path enumeration.

For C programs, Corin and Manzano [I0] describe the integration of taint
analysis into KLEE [5]. Their work is limited to propagation of single color
taint and do not show, how different analyses can be run on top of the taint
propagation, while we demonstrate how multi color taint can be used to analyze
the OWASP benchmark. It seems some work has been started on KLEE-TAINTF]
for a more sophisticated taint analysis in KLEE combining symbolic execution
with taint, but the approach requires to rewrite the C program to inject taint
assigning methods and taint checks for the analysis. JAINT integrates the taint
analysis without any modifications of the bytecode as taint injection and taint
monitoring is computed in the virtual machine and not as part of the binary.
Both approaches require a driver for the dynamic symbolic execution part.

" https://github.com/OWASP /Benchmark
8 https://github.com/feliam /klee-taint

TPF VM AddPC: [JDart |
A="ok

Program: Stack: R —
Terminated: A="oK A # oK
iload 2 vars=[1,2,..] Taint Exception
invoke source() args=]..]
args=][.] Restart: vy N
i 1 ('nok/, A) UNSAFE SAFE ?
. State: (ct)
invoke sani(b) Ret. fr. source() Taint Analysis
t Heap: —
invoke sink(b) P Taint B w/ ¢
id|conc|symb|taint . Sre = ¢ .
Bytecode Semantics: 1 A —>R6tl fr sani(s) e e sowreel)
——— . .
iadd: 2 "x” B ct Remove ¢; fr. B Sani := sani(*)
top = concAdd(l,r) 3 ObJ.‘ - *‘f"k Invoke sink(x) Sink ::= ¢; — sink(¥)
spreadTnt (top,1,r) 4 |0bj.| - [|sink || —0u———

Raise Exception

Fig. 1. Software Architecture of the implemented Vulnerability Analysis.

Several strategies for the implementation of taint models and taint propaga-
tion have been proposed: They range from integrating the taint check into the
interpreter [22] to a complete taint propagation DSL integrating the taint analy-
sis into the program [9]. In between are the flavors of integrating the taint check
into the compiler [I628] or into an execution environment [SITUBIIHI2I]. We
consider binary instrumentation as part of execution environment modification.
The advantage of a DSL integrated into the program is that the execution envi-
ronment and tool chain stay untouched. JAINT mixes two of those proposals. For
the taint propagation, we modified the program interpreter, in our case the JPF-
VM. In addition, we defined a DSL that allows to describe in which places taint
should be injected, sanitized and checked during execution. As a consequence,
the concrete taint injection does not require a modification of the program. Our
DSL only describes the analysis and not the taint propagation. Hence, it is a
different style of DSL than the one proposed by Conti and Russo [9].

Outline. The paper is structured as follows: We present our analysis frame-
work JAINT in Section [2| and discuss the proposed domain-specific language for
expressing concrete taint analyses in Section [3] Section [4] details results from
the evaluation of the integrated analysis on the OWASP benchmark suite. We
present conclusions and discuss directions for future research in Section

2 Taint Analysis with Jaint

JAINT integrates dynamic symbolic execution and dynamic tainting in a single
analysis framework. It is built on top of the JPF-VM. Figure [1] illustrates the
interplay between the dynamic symbolic execution handled by JDART [18§], the
taint analysis and the JPF-VM.

The virtual machine of JAVA PATHFINDER provides several extension mech-
anisms that JAINT uses for the implementation of the analysis: VM events, byte-
codes, peers, and heap annotations. Heap annotations are a mechanism for an-
notating objects on the heap with meta-information. VM events are hooks an

analysis can use to collect or modify meta-information during execution. The
JPF-VM allows to replace bytecode instructions or extend them to collect infor-
mation or trace meta-information during symbolic execution. Peers can replace
implementations of (native) library functions.

The dynamic symbolic execution uses bytecode semantics and peers for record-
ing symbolic path constraints as shown on the top-most arrow from the JPF-VM
box to the JDART box in Figure [I] Bytecode semantics for symbolic execution
and taint analysis are similar: while in the one case the result of operations is
computed and maintained symbolically based on the symbolic annotations on
operands, in the other case operations propagate existing taint annotations on
operands to results of operations. E.g., the implementation of the iadd bytecode
pops two integers including potential symbolic and taint annotations from the
stack, performs a concrete addition, computes a symbolic term representing the
result (only in case one of the integers was annotated symbolically), propagates
taint from the integers to the result, and pushes the result and annotations
back onto the stack. Symbolic values are used in path constraints (recorded on
branching bytecode instructions) that accumulate in the constraints tree (upper
right corner of the figure). The JDART concolic execution engine interacts with
the virtual machine by placing concolic values (concrete values with symbolic
annotations as shown in the heap table of the JPF-VM in Figure on the
heap to drive execution down previously unexplored paths in the constraints
tree. In the current version of JAINT, bytecode implementations do not remove
symbolic annotations or taint (e.g., on multiplication with constant 0). Such be-
havior could, however, be implemented easily. JDART has the same limitations
that symbolic execution has in general: recursion and loops are only analyzed
up to a (configurable) fixed number of invocations (iterations, respectively).

The dynamic taint analysis is built around VM events. Listening on VM
events (returns from methods), the taint analysis injects or removes taint from
objects on the heap. E.g., a sanitization interaction between the analysis and the
heap is shown in the lower part of Figure [I| The method exit event for the SANI
method interacts with the taint analysis and removes the ¢; taint mark from the
heap object with id 2 in this analysis. The interaction is represented by the RET.
FR. SANI(*) arrow. In addition, the taint analysis will check taint annotations
on heap objects and primitive values before entering methods. Those checks are
used for monitoring tainting of protected sinks. In combination with the taint
propagation in the bytecodes, the VM events implement the complete multi-
colored taint analysis. In the remainder of this section, we discuss the central
ideas of the interplay of the internal components of the implementation along a
small example and provide a high-level overview of the analysis.

2.1 Integration of Symbolic Execution and Taint Analysis.

Let us assume, we want to analyze method foo(String a, String b) from the
code snippet shown in Listing In particular, we want to check that no data
flows from malicious method call source() to the protected method sink()
unless the data is sanitized by passing through method sani (). This specifies

1 |static void foo(String a,

String b){ foo(a,b)
2 if (a.equals(”0k”)) id| conc |symbltaint
3 b = sani(b); AR
4 sink (b);} PP T T B 1 o
5 | public static void main
6 (o) { a.equals("ok")
7 String a =
8 Verifier. pes (4= o) pe (A7 o)
9 SymbStrlng (77 7 ,77A”) 5 id|conc|symb |taint id|conc|symb|taint
10 String b = source(); altok’| A | - al™ | AL -

b [”x” [san(B)| - b |"x” B ct

11 foo(a,b);}
12 | public String source(){ JSiﬂk(b) JSink(b)
13 return Verifier. SAFE UNSAFE: b in s
14 symbString ("x” ,”B");}

Fig.2. Tree of concolic executions of
method foo. Nodes show snapshots of the
heap with annotations of taint and sym-
bolic values.

Listing 1.1. Code Example: Parameter
b of method foo is only sanitized if
parameter a has value "ok".

the taint property denoted with taint color ¢; in this example and confirms the
configurable part we have to write down in JAINT’s taint DSL. It is visualized
in the lower right part of Figure |1} We will first describe how dynamic symbolic
execution is applied to the example followed by the taint integration.

Dynamic Symbolic Execution. Dynamic symbolic execution (DSE) is a dy-
namic analysis technique in which a program is executed with concrete data
values while constraints that are imposed on these values along a single execu-
tion are recorded as path constraints. Recorded symbolic constraints can then
be used as a basis for finding new concrete values that drive execution along
previously unexplored program paths. The program execution is restarted with
the new concrete values. This is represented in the top right corner of Figure

As DSE is a dynamic technique, a driver for the method under analysis is
required. For our example, this can be seen in Listing[I.1} The main(. . .) method
is used as a test driver for analyzing method foo(...): in the listing, we create
two variables of type String with values "" and "x" and instruct the analysis
to annotate these Strings with symbolic values A and B. These annotations
are tracked, modified, and propagated by the symbolic part of the underlying
execution engine. The state of the analysis is visualized in Figure [2} the tree
represents executions of foo(...) with different sets of concrete values. The
nodes of the tree visualize the state of the heap, including annotations to heap
cells that keep track of symbolic values and taint.

Let us first focus on symbolic values. Initially, variables a and b are marked
symbolically and contain the original concrete values (column ez.! in the root
node of Figure . Execution with these values proceeds down the right path in
the tree as a does not equal "ok". Path constraint A # ok’ is recorded. After
execution terminates, the analysis uses the recorded constraint for generating a
new value for a ("ok" in this case) that drives execution down the unexplored

path, represented by the left leaf of the execution tree. On this path, statement
b=sani(b) is executed and the symbolic value of b is updated accordingly to
symbolic value san(B). After execution of the path the tree is complete, i.e.,
all feasible method paths through foo(...) have been explored and concolic
execution halts. Next, we will briefly discuss, how we integrate the taint analysis
along the paths discovered by dynamic symbolic execution.

Dynamic Taint Analysis. We check if the defined property is violated on
some execution path by tainting relevant data values and tracking propagation
of taint (visualized in the last column of the tables that represent the state of the
heap in Figure[2)). The taint specification interacts with the JPF-VM using JPF’s
listener concept for VM events. The taint analysis subscribes to VM events, such
as method invocations and method exits. If such an event is triggered, e.g., a
method invocation, the generated listener checks whether the invoked method is
part of the taint specification. If this is the case, code for injecting taint, removing
taint or checking taint gets integrated into the execution. The JPF-VM allows to
extend objects with annotations directly on the heap. This is used for adding the
taint marks to the objects on the heap. The JPF-VM takes care to track those
annotations. If JAVA bytecodes operates on none heap objects as primitive data
types, the implemented bytecode semantics for symbolic execution get extended
with taint propagation semantics.

As the main method used as a driver for running foo only initializes b with a
call of source, only b will be tainted as malicious source with the ¢; taint color.
As there is no call to source in any of the assignments to a, a never becomes
marked with the ¢; taint color. Object s gets annotated as a protected sink.
During the first execution (along the right path in the tree), the taint marker
on b is not removed and a connection from source to sink is established upon
invocation of sink(b). The analysis reports that on this path the property that
“no data is allowed to flow from the malicious source to the protected sink” is
violated. Those taint exceptions directly abort the DSE along a path and trigger
the start of the next path. The second execution of foo(...) proceeds along
the left path in the figure. In this case, statement b=sani(b) is executed and
the taint marker is removed from b. The analysis concludes that the path is
safe to execute and exits without any error along this path. After the combined
taint analysis and DSE terminates, akin to other dynamic analysis methods, we
can produce a concrete witness that exhibits the security vulnerability on the
first execution path and triggers our taint monitor. At the same time, we are
confident that all feasible program paths (within the cone of influence of the
symbolic variables) were analyzed.

In the context of taint analysis, control-flow dependent taint is often dis-
cussed as a problem for precise taint analysis. In the scope of the method foo,
both parameters are external parameters, but only b becomes tainted. In con-
trast a is the parameter influencing the control-flow in line 2 of Listing As
both are external parameters, we model both of them symbolically, and as the
parameter a influences the if condition, this example further demonstrates, how
symbolic execution ensures the control-flow dependent value propagation even if

’ System Under Test %

Tai M Li Test Harness Svmbolic P
s ¥ Sfieer w/ Symbolic Inputs ymbolic reers
\ |

¢ ::Satisﬁed‘:)

-—-- " Violated + Inputs_ :i\

P

Fig. 3. JAINT combines user-defined dynamic taint-analyses with dynamic symbolic
execution of Java programs. Taint DSL Specification (hexagon) and source code arti-
facts (documents) are compiled and analyzed (rectangles); verdicts shown as ellipses.

the parameter influencing the control-flow is not part of the taint specification.
In contrast to pure dynamic tainting approaches, JAINT does this without any
over-approximation. Due to the DSE, the analysis keeps track of the different
branches and reports precisely which branches eventually violate a property and
on which branches the property holds. This way, JAINT integrates DSE and
dynamic taint analysis in a single framework splitting the tasks of data-flow
tainting and control-flow tainting between the symbolic model in the DSE and
the dynamic taint analysis. An appropriate symbolic model takes care of even-
tual effects from external parameters on the control-flow. The dynamic taint
analysis only propagates the different taint colors along the current execution
path, checks monitors and eventually removes taint marks wherever required.
We will summarize this workflow below.

2.2 User-defined Taint Analyses with Jaint

As shown in the previous subsection, the JAINT framework combines dynamic
taint analysis with DSE. Figure [3] shows the analysis workflow. The cyan boxes
are tools built to establish the JAINT workflow. In the center of the lower part is
the analysis engine running dynamic symbolic execution and the data-flow taint
analysis. An analysis will lead to one of three verdicts: no exploitable vulner-
ability exists (Satisfied, green ellipse), a vulnerability and an exploit are found
(Violated + Inputs, red ellipse), the instance is undecidable due to an intractable
symbolic constraint or due to exhausted resources (Don’t Know, orange ellipse).
In the upper half, the required inputs are represented: For some system under
test, a test harness that defines the scope of symbolic analysis, and a set of sym-
bolic peers are provided for the dynamic symbolic execution from the center to
the right side. On the left, the required taint inputs are represented. The user
provides a taint specification in JAINT’s taint DSL. The DSL code generator
part of the framework generates the required VM listeners for the taint analysis,
which are passed along to the main tool.

JAINT describes taint flow properties in its own domain specific language
(DSL), which is described in detail in Section 3] The DSL allows to specify
different taint analyses which are all executed in parallel during the execution

of the program as long as they all use a different taint color. The DSL is built
on top of MPS and JAINT runs a code generator (the upper left cyan box) to
synthesize the required VM listeners working as taint monitors for each of the
specified taint analyses.

A test harness defines the symbolic parts of the system under test and there-
fore the analysis scope. In the test harness certain inputs are modeled sym-
bolically, while others might remain concrete values. For analyzing JAvA Web-
applications, we constructed symbolic String values as part of JDART along with
a symbolic peer for String operations as an example for such peers. The symbolic
peer models String operations on the basis of symbolic byte arrays. Those byte
arrays are logical encoded in the bit-vector theory for constraint solving. The
String model is robust enough for the evaluation of the OWASP benchmark and
performed well in the Java track of SV-Comp 2020 (c.f. [I9]). We released it
open source as part of the JDART versiorﬂ used for SV-Comp. Balancing sym-
bolic and concrete parts of the system state space is the key factor for analysis
performance. Unnecessary large state spaces waste resources, while a too small
state space might harm the analysis verdict by cutting away relevant paths.

The analysis environment can be modeled using symbolic peers in JDART.
Apart from the symbolic peer modeling the symbolic operations of Strings, we
can use such peers as well to mock the behavior of an interface or model sym-
bolically the execution of an external resource. As an example, in the case of
SQL injection analyses, a model for java.sql.Statement is required to describe
the taint flow appropriate. Similar, we defined symbolic peers for other system
resources as the file system or the LDAP API. This allows us to analyze the
OWASP benchmark. In the same way, a test harness might skip relevant parts
of the execution, a symbolic peer might threat the analysis, if the environment
model is an under approximation.

JAINT allows to split the task of establishing an effective security analysis in
two domains. A program analysis engineer might model the relevant resources
for dynamic symbolic execution, while a security engineer can define the security
properties. Next, we will explain the DSL JAINT offers for the security engineer.

3 A DSL for Defining Taint Analyses

In JAINT, concrete taint analyses are specified by means of a domain-specific
language (DSL). Taint generators, sanitizers, and monitors are generated from
specifications. While code generation is currently tailored towards JPF/JDART,
it could easily be adapted to generate code for other verification frameworks. The
triggers and conditions for generating and removing taint as well as for raising
alarms that can be specified in the language are generic (for JAVA programs).
Concrete analyses are however particular to the libraries and frameworks used by
a program under analysis: these libraries have APIs and methods in these APIs
may be sources or sinks for taint flow. In this section we present this domain-

9 https://github.com/tudo-aqua/jdart

specific language along with some examples of concrete taint analyses motivated
by CWEs in the OWASP benchmark suite.

Specification of Taint Analyses. Our DSL enables the definition of custom
taint analyses. An analysis is specified by a tuple (Sre, Sani, Sink), consisting
of malicious sources (Src), sanitization methods (Sani), and protected sinks
(Sink). Each of these elements specifies signatures of methods that, upon in-
vocation or return, should trigger either marking a return attribute, removing
the mark from an object, or checking for marked parameters, respectively. The
syntax of the DSL is defined in as BNF. Constant syntax elements are high-
lighted with gray boxes.

Generation ::= Analysis(, Analysis)*
Analysis ::= (Sre)*, (Sani)*, Sink
Src = Src::= (id|id") « Signatures
Sani ::= Sani::= Signatures
Sink ::= Sink::= (id|id") = Signatures
Signatures ::= ExtSignature (, ExtSignature)®
ExtSignature ::= Signature (.<class>Method (Parameter))* (1)

Signature ::= (_: class) . Method (Parameter)
Method ::= (method|<init>)

Parameter ::= (param|param™ |V alueCheck Exp)
ValueCheckExp ::= (ValueCheck ((and|or) ValueCheck)*
ValueCheck ::= (ParamV alue has (not)* value value)
ParamValue ::= (type param|class id : id . (Method () |param))

To allow multiple parallel taint analyses the top-level Generation allows the
containment, of multiple Analysis elements. Each analysis is based on the tu-
ple (Src, Sani, Sink) of which the first two are optional. For some weaknesses
sanitization methods are not available and therefore neglectable. Taint analyses
which depend on specific argument values of protected sinks and not on taint
flow (c.f. example in), do not contain source definitions. Each weakness has
its unique identifier (or color) declared by id in the Src and Sink declaration.
We use id* in Sre to indicate that fields and nested objects of the returned ob-
ject are tainted additionally. With the usage of id™ in Sink we indicate that not
only immediate taint of some parameter value has to be checked when invoking a
sink but also taint of reachable objects from the parameter. The expression class
matches fully qualified class names and method is an expression for matching
method names. We allow x as a wildcard for an arbitrary sequence of symbols.
With <init> we restrict the method check to only consider constructors of the
declared class. The expression param matches names of parameters. We use
the empty String for methods without parameters and * for arbitrary parame-
ters. With param™ we define that, instead of the return attribute, the declared

parameter will be tainted. To also conveniently describe trigger conditions on
the concrete values passed into sink methods: param may contain expressions
like (int p has value 5) for specific parameter values or (Object o : o.var
has value 5) for field accesses. It indicates that a taint alarm should be raised
in case of a method invocation with a field value of 5 for the field var of pa-
rameter o which is of type Object. For building complex expressions we allow
composite boolean expressions with the keywords and and or e.g., (param has
value a) or (param has not value b).

To express a sequence of method calls that constitute a protected sink, ad-
ditional information has to be provided (c.f. ExtSignature). For that, <class>
specifies the type of the returned variable on which taint should be checked.

Example. To clarify this behavior and give an example, we further describe
parts of the Cross Site Scripting weakness analysis with a code snippet in List-
ing and corresponding DSL snippet in . Cross site scripting (CWE 7@
occurs when data (e.g., JavaScript code) from an untrusted source is added to
the Web-page and served to other users without proper sanitization.

Src = xsst « (_: xHttpServlietRequest).getx ()

Sani ::= (_: org.apache.commons.lang.StringEscapeUtils)
.escapeHtml (%),
(- : org.owasp.esapi.ESAPI).encodeForHTML(x),
(- : org.springframework.web.util . Htm1Utils)
.htmlEscape(x)
Sink ::= xzsst — (_: javax.servlet.http.HttpServlietResponse)

.getWriter().<java.io.PrintWriter>x(x)

1 | public void doPost(HttpServletRequest request

2 |HttpServletResponse response) {

3

4 String param = 77

5 java.util . Enumeration<String> headers = request.

getHeaders (” Referer”);

6 if (headers != null && headers.hasMoreElements ()){
7 param = headers.nextElement () ;

8 }

9
10 response . getWriter () .format (..., param, ...);}

Listing 1.2. Code Example: Cross side scripting vulnerability in servlet
BenchmarkTest00013 of the OWASP benchmark suite (omissions for improved
readability).

In line 5| data is read from the HttpServletRequest object. According to the
specification in this classifies as reading from a malicious source. There-
fore, the returned value is annotated with a taint marker of type xss during

10 https://cwe.mitre.org/data/definitions/79.html

concolic execution. At the same time, all elements contained in the returned
Enumeration<String> are tainted as well, as the non-immediate taint flag is set
(c.f. zss™t in Src of) This is necessary as the param variable is set by getting
the next element with the nextElement () method in line [/} Without implicit
taint propagation the taint information would be lost at this point. From line
code is executed that eventually manifests a protected sink for taint of type zss:
In line [I0] the condition for the protected source is matched. The PrintWriter
object returned by the getWriter () method is flagged to signalize possible fu-
ture taint violations (c.f. xsst in Sink of) Calling the format (. ..) method
in the same line first checks the called object if it is flagged. Here, this is the
case, so the real taint check on the parameter param can be executed. Since the
variable is marked as zss-tainted, the analysis will correctly raise an alarm.

4 Evaluation

We evaluate JAINT by applying the framework on the OWASP benchmark.
The OWASP benchmark suite (version 1.2) consists of 2,740 servlets that are
categorized into 11 CWE classes. We aim to answer the following three research
questions during the evaluation:

RQ1: Is JAINT’s Taint-DSL expressive enough for specifying security analyses?
We approach this question by specifying analyses for the 11 CWEs in the
OWASP benchmark and by discussing briefly comparing the expressiveness
to the specifications provided by other tools.

RQ2: Does the combination of dynamic symbolic execution and dynamic taint-
ing improve precision over the state of the art in security analysis? We ap-
proach this question by comparing JAINT’s precision to industrial tools.

RQ3: How expensive is the application of JAINT, especially compared to exist-
ing tools? We approach this question by analyzing JAINT’s runtime.

We begin by detailing some taint analyses (RQ1), before presenting results from
a series of experiments (RQ2 and RQ3).

4.1 Taint Analyses for OWASP CWEs

The CWEs included in the OWASP benchmark suite, broadly fall into two classes
of properties: Source-to-Sink-Flow and Condition-on-Sink properties. The first
class is the main domain of taint analysis and requires the flow of taint marks
from a source to a sink. The second group checks a concrete value for a con-
crete assignment at a certain point of time in the execution flow. While this is
not the typical strength of dynamic tainting, we can still check those properties
easily with JAINT, using only sink conditions. The Source-to-Sink-Flow group
comprises 8 CWEs: Path Traversal Injection (CWE 22), Cross Site Scripting
(CWE 79), SQL Injection (CWE 89), Command Injection (CWE 78), LDAP In-
jection (CWE 90), Weak randomness (CWE 330), Trust Bound Violation (CWE
501) and XPath Injection (CWE643). The Condition-on-Sink group comprises 3

CWEs: Weak Crypto (CWE 327), Weak Hashing (CWE 330) and Secure Cookie
(CWEG14). In the remainder of this subsection, we detail the specifications for
three of the CWEs.

SQL Injection. The structured query language (SQL) is a fourth-generation
language and SQL queries are constructed as Strings in JAVA programs. When
this is done manually in a servlet, parameters of the HTTP request are typically
integrated into the SQL query through String concatenation. Without proper
String sanitization before the concatenation, this allows for a so-called SQL
injection (CWE qul), i.e., the resulting SQL query can be manipulated by
injecting additional SQL statements into the query String.

It is well known that proper sanitization of parameters is hard and SQL in-
jection vulnerabilities are best prevented by using prepared statements instead
of building queries manually. Consequently, the OWASP benchmark assumes
that there are no adequate sanitization methods for this weakness. The specifi-
cation of the corresponding taint analysis is shown in . We consider the sql
parameter of any method as a protected sink in some of the interfaces from the
java.sql and org.springframework. jdbc packages.

Src = sqli < (- : *HttpServletRequest).getx()

—~ o~

Sink ::= sqli — (_: java.sql.Statement).*(sql),

_: java.sql.Connection).x(sql),

—_— —~

_: org.springframework.jdbc.core.JdbcTemplate).*(sql)

Command Injection. Command injection (CWE 78|E) attacks are similar to
the injection attacks discussed above. However, instead of injecting statements
into some query language, these attacks aim at injecting commands into a shell,
i.e., into a command that is executed as a new process. (4) specifies the cor-
responding taint analysis. Methods that match patterns Runtime.exec(*) and
ProcessBuilder.*(command) are considered protected sinks.

Src = emdit < (_: +HttpServletRequest).get()
Sink ::= cmdi — (_: java.lang.Runtime).exec(x), (4)

(- : java.lang.ProcessBuilder).*(command)

Secure Cookie Flag. A secure cookie flag (CWE 614@ weakness exists in
a servlet when a cookie with sensitive data is added to the response object
without setting the secure cookie flag (setting the flag forces Web-containers to
use HTTPS communication). The corresponding taint analysis is specified in
. When a cookie is added to the request, the analysis checks that the secure
flag is set.

Sink ::= % — (_: javax.servlet.http.Response)

.addCookie(cookie c : c.getSecure() has value false)

Y https://cwe.mitre.org/data/definitions/89.html
12 https://cwe.mitre.org/data,/definitions/78.html
'3 https://cwe.mitre.org/data/definitions/614.html

Please note that the specification of the trigger condition in is more complex
as in the case of SQL injection as we have to express a condition on a field of an
object.

Summarizing, the expressiveness of JAINT’s taint DSL was sufficient for ex-
pressing the CWEs in the OWASP benchmarks.

Comparing the expressiveness to other tools that provide performance data
for the OWASP benchmark suite, at least SBwFindSecBugs (cf. next subsection)
uses an approach similar to JAINT: Method signatures and parameter positions
are used for specifying taint sources and sinks. JAINT’s taint DSL is more precise
and more expressive than SBwFindSecBugs by allowing custom sources and sinks
per analysis, by allowing to express that an object obtained from a sink becomes
a sink as well, and by allowing to specify constraints on parameter values.

Together, these two results provide some confidence in the expressiveness of
JAINT’s taint DSL (RQ1). Of course, there is effort associated with specifying
custom sources and sinks for analyses and for analyzed APIs but developers of
tools have to spent effort on definition of taint sources and sinks anyway and (in
the long run) all tools can profit from more detailed specifications.

4.2 Experimental Performance Analysis

In this subsection we describe the setup used to evaluate our framework on the
OWASP benchmark and compare JAINT with the other tools based on precision
(RQ2). We will show that JAINT successfully beats existing research approaches
in precision and discusses JAINT’s runtime performance compared with other
noncommercial tools (RQ3).

Setup. JAINT’s taint DSL and a corresponding code generator are implemented
in the Meta Programming System (MPS) E We used the implementation to
generate monitors and taint injectors together with sanitization points for the
11 CWEs in the OWASP benchmark. We have written a generic HttpServlet
driver for executing each of the servlets. For the DSE, we modeled all data read
from a request object symbolically as it is the untrusted input read from the
web. This ensures that we explore all paths across a HttpServlet that might be
influenced through a request by a malicious attacker, as the OWASP benchmark
does not contain another untrusted source. In addition, we provided suitable
symbolic peers for the used libraries that require environment interaction. For
example, the analysis of a test case related to a potential SQL injection weakness
(CWE 89) requires a suitable abstraction for the database interaction involved
in the test case. In the same way, we provided abstractions for file system access,
LDAP related implementations and XPath libraries. Those libraries are required
to enable the DSE to process the OWASP benchmark and are not related to the
taint analysis. Using the mentioned driver together with the peers, we analyzed
every servlet with JAINT and 11 taint colors enabled. All experiments were con-
ducted on an Intel(R) Core(TM) i9-7960X machine with 128 GB RAM and an
SSD hard drive, running Ubuntu with kernel 5.4.0-33 (x86-64).

1 https://www.jetbrains.com/mps/

OWASP Benchmark v1.2 Results Comparison

Betterthanguessing | | - Random Guess Non-Commercial
m A: FBwFindSecBugs v1.4.0 (12%)
- mB:FBwFindSecBugs v1.4.6 (39%)
| /" mC:FindBugs v3.0.1 (0%)
N [N u D: Jaint (100%)
20% u E: OWASP ZAP vD-2015-08-24 (18%)
A s < u F: OWASP ZAP vD-2016-09-05 (20%)
u G: PMD v5.2.3 (0%)
m H: SBwFindSecBugs v1.9.0 (38%)
u I: SonarQube Java Plugin v3.14 (33%)
u J: SpotBugs v3.1.11 (0%)

100%

a*
]

True Positive Rate
@
8
2
n
>u
<

Scorecard Generated: 06 Jul 2020 10:00 AM Worse than guessing
0% 10% 20% 30% 40% ©50% 60% 70% 80% 90% 100% 110% 120% 130% 140% 150% 160% 170%
False Positive Rate

Fig.4. Comparing our results of the generated DSL specification with results
from related work. The percentag is computed as follows: TruePositiveRate —
FalsePositiveRate.

Precision. Over all categories of CWEs, JAINT achieves the maximum possible
precision of 100% true verdicts and 0% false verdicts, i.e., it finds all vulnerabili-
ties in the benchmarks and does not raise a single false alarm. It outperforms the
other tools for which performance is reported to OWASP by a big margin: the
scorecardE that is provided by the OWASP benchmark suite is shown in Fig-
ure [4] (JAINT is marked D). The other tools in the card that perform better than
random guessing fall into three groups: over-approximating tools with (close to)
no false negatives but a high rate of false positives (B, H), under-approximating
tools with no false positives but high numbers of false negatives (F, F'), and a
third group (A,I) with high rates of false positives and false negatives.

For some commercial tools, performance data is not included in the OWASP
scorecard, and hence not included in our evaluation, but can be found in promo-
tional statements on the web pages of tool vendors. Most notably, Hdiv’s and
Contrast’s IAST tools also report 100% true verdicts and 0% false positives on
the OWASP benchmark suite. It seems, however, that TAST is a dynamic analy-
sis and — in contrast to JAINT— cannot guarantee complete exploration. Julia,
a commercial static analyzer using abstract interpretation, is reported to achieve
a 90% score in the benchmark, which is a very good score but still includes 116
false positive results [4]. So far, JAINT is the only tool that can provide com-
pleteness guarantees (within the limits of symbolic execution), while performing
precise security analysis (RQ2).

!5 Score computation: https://owasp.org/www-project-benchmark /#div-scoring

Performance. We compare the runtime of JAINT to the static code analysis
FindSecBugs (H) as performance data for the commercial IAST tools and for
Juliet could not be obtained. FindSecBugs needs 62 seconds (average over 3
runs with no significant variance) for analyzing the OWASP benchmark suite,
averaging 23ms per task. JAINT, in comparison, needs 1879 seconds (average
over 3 runs with 5 seconds std. deviation), i.e., an average of 686 ms per task.
While this constitutes a thirtyfold increase in runtime, the absolute runtime still
allows to run JAINT as part of a CI pipeline, especially since the reported runtime
is obtained through single-threaded and sequential task processing, leaving space
for runtime optimization through parallelization (RQ3).

5 Conclusion

In this paper, we have presented JAINT, a framework for analyzing JAVA Web-
Applications. JAINT is the first working proof-of-concept for combining dynamic
symbolic execution and dynamic multi-colored taint analysis in JAvVA. Our ap-
proach strictly separates symbolic annotations and colored taint markers used
for a security analysis. This enables analysis of arbitrary sanitization operations
while dynamic symbolic execution is still capable of exploring the symbolic state
space. JAINT uses JDART and the JPF-VM, as the dynamic symbolic execution
engine of JAVA byte code.

We extended JDART with environment models that represent parts of the
JAVA standard library and provide symbolic summaries and model taint propaga-
tion for some of the interfaces in the JAVA library, e.g., classes from the java.sql
package. For the specification of security properties that JAINT should check,
we provide a domain-specific language (DSL) based on the Meta Programming
System (MPS). Custom components for checking of specified properties are gen-
erated from specifications (i.e., VM event listeners that can be plugged into the
JPF-VM for taint injection, taint sanitization, and taint monitoring).

The evaluation of the approach on the OWASP benchmark shows promis-
ing results: the implementation achieves a 100% score and 0% false positive
results, outperforming all other research tools for which performance data on
the OWASP benchmark suite is available. Basis for the evaluation was the spec-
ification of taint analyses for the 11 classes of CWEs in the OWASP benchmark
suite using the proposed taint DSL. Specifications were derived by researching
CWEs and by inspection of the code of the OWASP benchmark suite and the
JAVA class library. As these taint analyses are specified using our DSL we could
demonstrate successfully, that our domain-specific language is expressive enough
for specifying taint analyses for a relevant set of CWEs.

Being based on the synthetic OWASP benchmark suite, the conducted ex-
periments only provide initial insights into the applicability and challenges of
combining dynamic symbolic execution and taint analysis for the analysis of
Web-Applications. The scalability of JAINT depends on the performance of the
underlying dynamic symbolic execution engine. Here, the manually developed
environment models may hamper application in industrial contexts. One direc-

tion of future work is thus the automation of environment modeling, e.g., using
domain-specific languages.

References

10.

11.

12.

13.

14.

15.

Jon Allen. Perl version 5.8.8 documentation - perlsec. http://perldoc.perl.org/5.
8.8 /perlsec.pdf, May 2016.

Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene
Finocchi. A survey of symbolic execution techniques. ACM Computing Surveys
(CSUR), 51(3):50, 2018.

Sofia Bekrar, Chaouki Bekrar, Roland Groz, and Laurent Mounier. A taint based
approach for smart fuzzing. In 2012 IEEE Fifth International Conference on Soft-
ware Testing, Verification and Validation, pages 818-825. IEEE, 2012.

Elisa Burato, Pietro Ferrara, and Fausto Spoto. Security analysis of the OWASP
benchmark with Julia. Proceedings of ITASEC, 17, 2017.

Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems programs. In
OSDI, volume 8, pages 209-224, 2008.

Cristian Cadar and Koushik Sen. Symbolic execution for software testing: Three
decades later. Commun. ACM, 56(2):82-90, February 2013. |doi:10.1145/
2408776.2408795.

Winnie Cheng, Qin Zhao, Bei Yu, and Scott Hiroshige. TaintTrace: Efficient flow
tracing with dynamic binary rewriting. In 11th IEEE Symposium on Computers
and Communications (ISCC’06), pages 749-754. IEEE, 2006.

James Clause, Wanchun Li, and Alessandro Orso. Dytan: a generic dynamic taint
analysis framework. In Proceedings of the 2007 international symposium on Soft-
ware testing and analysis, pages 196-206. ACM, 2007.

Juan José Conti and Alejandro Russo. A taint mode for Python via a library. In
Nordic Conference on Secure IT Systems, pages 210-222. Springer, 2010.

Ricardo Corin and Felipe Andrés Manzano. Taint analysis of security code in
the KLEE symbolic execution engine. In Tat Wing Chim and Tsz Hon Yuen,
editors, Information and Communications Security, pages 264275, Berlin, Heidel-
berg, 2012. Springer Berlin Heidelberg.

Ehsan Edalat, Babak Sadeghiyan, and Fatemeh Ghassemi. Considroid: A concolic-
based tool for detecting SQL injection vulnerability in android apps. CoRR,
abs/1811.10448, 2018. arXiv:1811.10448.

Vivek Haldar, Deepak Chandra, and Michael Franz. Dynamic taint propagation
for Java. In 21st Annual Computer Security Applications Conference (ACSAC’05),
pages 9-pp. IEEE, 2005.

Klaus Havelund and Thomas Pressburger. Model checking Java programs using
Java PathFinder. International Journal on Software Tools for Technology Transfer,
2(4):366-381, 2000.

Kangkook Jee, Georgios Portokalidis, Vasileios P Kemerlis, Soumyadeep Ghosh,
David T August, and Angelos D Keromytis. A general approach for efficiently
accelerating software-based dynamic data flow tracking on commodity hardware.
In NDSS, 2012.

Min Gyung Kang, Stephen McCamant, Pongsin Poosankam, and Dawn Song.
DTA++: dynamic taint analysis with targeted control-flow propagation. In Pro-
ceedings of the Network and Distributed System Security Symposium, NDSS 2011,

http://perldoc.perl.org/5.8.8/perlsec.pdf
http://perldoc.perl.org/5.8.8/perlsec.pdf
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/2408776.2408795
http://arxiv.org/abs/1811.10448

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

San Diego, California, USA, 6th February - 9th February 2011, 2011. URL:
http://www.isoc.org/isoc/conferences/ndss/11/pdf/5_4.pdf.

Lap Chung Lam and Tzi-cker Chiueh. A general dynamic information flow track-
ing framework for security applications. In 2006 22nd Annual Computer Security
Applications Conference (ACSAC’06), pages 463-472. IEEE, 2006.

V Benjamin Livshits and Monica S Lam. Finding security vulnerabilities in Java
applications with static analysis. In USENIX Security Symposium, volume 14,
pages 18-18, 2005.

Kasper Luckow, Marko Dimjasevi¢, Dimitra Giannakopoulou, Falk Howar, Malte
Isberner, Temesghen Kahsai, Zvonimir Rakamarié¢, and Vishwanath Raman. Jdart:
A dynamic symbolic analysis framework. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pages 442—459. Springer,
2016.

Malte Mues and Falk Howar. JDart: Dynamic symbolic execution for Java bytecode
(competition contribution). In International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages 398-402. Springer, 2020.
Malte Mues, Till Schallau, and Falk Howar. Artifact for ‘Jaint: A Framework for
User-Defined Dynamic Taint-Analyses based on Dynamic Symbolic Execution of
Java Programs’, September 2020. doi:10.5281/zenodo.4060244.

James Newsome and Dawn Xiaodong Song. Dynamic taint analysis for automatic
detection, analysis, and signaturegeneration of exploits on commodity software. In
NDSS, volume 5, pages 3—4. Citeseer, 2005.

Anh Nguyen-Tuong, Salvatore Guarnieri, Doug Greene, Jeff Shirley, and David
Evans. Automatically hardening web applications using precise tainting. Springer,
2005.

Andrei Sabelfeld and Andrew C Myers. Language-based information-flow security.
Selected Areas in Communications, IEEE Journal on, 21(1):5-19, 2003.

Daniel Schoepe, Musard Balliu, Benjamin C Pierce, and Andrei Sabelfeld. Explicit
secrecy: A policy for taint tracking. In 2016 IEEE FEuropean Symposium on Security
and Privacy (EuroSE&P), pages 15-30. IEEE, 2016.

Edward J Schwartz, Thanassis Avgerinos, and David Brumley. All you ever wanted
to know about dynamic taint analysis and forward symbolic execution (but might
have been afraid to ask). In 2010 IEEE symposium on Security and privacy, pages
317-331. IEEE, 2010.

Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung
Kang, Zhenkai Liang, James Newsome, Pongsin Poosankam, and Prateek Saxena.
Bitblaze: A new approach to computer security via binary analysis. In R. Sekar
and Arun K. Pujari, editors, Information Systems Security, pages 1-25, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

Fausto Spoto. The julia static analyzer for java. In Xavier Rival, editor, Static
Analysis, pages 39-57, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

Wei Xu, Sandeep Bhatkar, and Ramachandran Sekar. Taint-enhanced policy en-
forcement: A practical approach to defeat a wide range of attacks. In USENIX
Security Symposium, pages 121-136, 2006.

http://www.isoc.org/isoc/conferences/ndss/11/pdf/5_4.pdf
https://doi.org/10.5281/zenodo.4060244

	Jaint: A Framework for User-Defined Dynamic Taint-Analyses based on Dynamic Symbolic Execution of Java Programs

