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Abstract. Scenario-based testing is envisioned as a key approach for the
safety assurance of automated driving systems. In scenario-based testing,
relevant (driving) scenarios are the basis of tests. Many recent works
focus on specification, variation, generation, and execution of individual
scenarios. In this work, we address the open challenges of classifying
sets of recorded test drives into such scenarios and measuring scenario
coverage in these test drives. Technically, we specify features in logic
formulas over complex data streams and construct tree-based classifiers
for scenarios from these feature specifications. For such specifications,
we introduce CMFTBL, a new logic that extends existing linear-time
temporal logics with aspects that are essential for concise specifications
that work on field-recorded data. We demonstrate the expressiveness
and effectiveness of our approach by defining a family of related scenario
classifiers for different aspects of urban driving.

1 Introduction

One of the open challenges in developing automated driving systems is assuring
their safety [20]. For several years, research has focused on structured approaches
to assure the safety of autonomous driving systems [9, 21]. The recently pub-
lished ISO 21448 [14] norm (Safety of the Intended Functionality) transfers the
conceptual framework of system safety approaches (e.g., ISO 26262 [13]) to the
assurance of a vehicle’s safety under all environmental conditions and possible
faults that are triggered by the environment [25]. The idea is to identify relevant
driving situations and potential triggers and then use these as a basis for testing
the safety of a vehicle or its driving software. Many recent works focus on defining
notions of safety [33], formalizing what constitutes scenarios [31, 35], and on
testing safety in specified scenarios [23].

Recent standardization efforts target the specification of so-called operational
design domains (ODDs) [34] that define the anticipated environmental conditions
for autonomous driving systems at a high level (e.g., weather conditions, road
types and parameters, etc.). To combine works and results on testing individual
scenarios into compelling arguments about the safety of an autonomous driving
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system in its operational design domain, we need tools for describing sets of
relevant scenarios in some ODD and methods for analyzing coverage of these
scenarios in driving tests as, e.g., stated in the ASAM OpenODD concept [2].

In this paper, we present an approach to the specification of scenario sets
through the definition and recognition of scenario features. These features can then
be used to classify observed scenarios in recorded test drives. Moreover, we can
compute the set of possible combinations of features from our specification. This
enables us to provide coverage metrics and to identify counterfactual scenarios,
i.e., scenarios that were not observed but could be observed. Technically, we
specify features in logic formulas over complex data streams and construct tree-
based classifiers from these feature specifications that describe sets of scenarios,
emerging from the combinatorial combination of features. We extend an existing
modal logic to express features that can be found in ODD standards, in the 6-layer
model of driving scenarios [31], and in the classification of driving maneuvers
(e.g., intersection, sunny, oncoming traffic, left-turn maneuver, etc.).

For the demonstration of the expressiveness and effectiveness of our approach,
we conduct a case study: we specify a small set of features and use test drives in a
randomized simulation to analyze the observed scenario classes and the coverage
that can be achieved in this setup. We also demonstrate how to decompose and
analyze coverage for individual features or layers of the 6-layer model.

Summarizing, the contribution of this paper is threefold:

1. We introduce the Counting Metric First Order Temporal Binding Logic
(CMFTBL), a formal logic for describing properties over recorded sequences
of scenes. The logic extends upon existing temporal logics in multiple aspects
that are essential for concise specifications that work on field-recorded data:
firstly, the logic allows us to express imprecise specifications (in the spirit of
“most of the time”); secondly, it is defined over complex structured domains for
capturing scenes, and thirdly, it allows binding term evaluations to variables
for access in nested parts of formulas (cf. Sect. 3).

2. We present a method for specifying and classifying sets of scenarios that is
conceptually inspired by recent works and standardization efforts around
operational design domains (ODDs) and technically inspired by feature
models [30], where features of scenarios are specified using the CMFTBL
logic (cf. Sect. 4.1).

3. The specification of features for sets of scenarios enables several quantitative
and qualitative analyses on recorded driving data, e.g., scenario coverage,
missing scenarios, missing combination of features, and distribution of combi-
nations of features. In contrast to other works, these metrics focus on sets of
scenarios and not on the parameters of one scenario (cf. Sect. 4.2).

Related Work. The presented approach is related to various existing works on
the safety of automated driving systems, as well as works that utilize logic for
specifying properties of safety-critical systems.

Amersbach and Winner [1] present an approach for estimating the required
number of concrete scenarios for achieving scenario coverage based on real-
world driving and accident data. Their analysis shows that more scenarios
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are required than would be feasible to test. Therefore, they propose to group
concrete parameter combinations in so-called functional (i.e., abstract) scenario
specifications (e.g., lane-change, following). Similar to this, Jafer et al. [15]
introduce the Aviation Scenario Definition Language (ASDL), which allows for
graphically specifying abstract and concrete flight scenarios. The conformance of
the defined scenarios to predefined rules is verified using state charts and a model
checker [4]. Our work provides classifiers for such abstract features of a scenario.

Li et al. [17] generate abstract scenarios with the goal of maximizing the
coverage of k -way combinatorial testing for various scenario categories (e.g.,
weather, road type, ego-action). While their scenario categories are related to
our scenario features, they do not provide classifiers for categories but aim to
generate concrete instances of abstract scenarios.

Variants of temporal logics are commonly used for specifying properties of au-
tonomous systems and their operational environments: Esterle et al. [7] formalize
traffic rules for highway situations using Linear Temporal Logic (LTL). Rizaldi
et al. [24] also formalize German overtaking rules using the same logic. Others
formalize similar traffic rules, such as interstate traffic [19] or intersections [18],
using the Metric Temporal Logic (MTL), as LTL is not capable of modeling
duration. In a different direction of works, Schumann et al. [32] use MTL and LTL
in their R2U2 framework for runtime System Health Management. Johannsen
et al. [16] demonstrate how they extend this approach to transform previously
intractable "first order" specifications (i.e., self-reference, unboundedness, and
explicit counting) into Mission-time Linear Temporal Logic (MLTL) formulas
without the need for extensions. This is done by parameterizing specifications
based on restrictions of the evaluation domain. Dokhanchi et al. [5] introduce a
freeze frame quantifier in their Timed Quality Temporal Logic (TQTL) to refer
to objects in some time frame. We use a similar operator for modeling relations of
objects over time (e.g., lane changes). Finally, the fret framework [10] internally
also works with LTL formulas. It can be used to define and analyze formal
requirements in the restricted natural language fretish [11]. Similar to our goal
of providing concise specification mechanisms, this work aims at making formal
specification languages accessible to domain experts.

Outline. The paper is structured as follows. Section 2 outlines an example
that motivates our approach. The formal logic for defining scenario properties
is introduced in Sect. 3. Section 4 then introduces the formalism for scenario
classifier trees and the calculation of coverage metrics and analyses on such trees.
The results of our case study are presented in Sect. 5. The paper concludes in
Sect. 6.

Extended Version, Implementation, and Reproduction Package. We
provide an extended version of this paper [28], the open-source framework im-
plementation3, and a reproduction package on Zenodo [29]. For more technical
introductions to the framework, please refer to [26] and [27].

3 https://github.com/tudo-aqua/stars

https://github.com/tudo-aqua/stars
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2 Motivational Example

We illustrate our approach to analyzing test drives in an urban environment. For
this, we utilize a database of recorded test drives as the foundation. Recordings
consist of sequences of scenes that are split into meaningful segments, e.g., based
on regions of a map. A single scene is the snapshot of the state and the observed
environment of the ego vehicle, comprising map data, position, and velocity of
the ego vehicle, stationary objects, and moving objects around the ego vehicle.
We record segments (i.e., sequences of scenes) at fixed intervals.

Our task is to decide whether this database of test drives covers sufficiently
many relevant scenarios (i.e., archetypes of driving situations), or at least classify
the test drives to identify the encountered scenarios. A scenario, in this case,
would be a basic driving task, like making an unprotected left turn on a three-
way intersection, and it could have variants, e.g., presence of oncoming traffic or
pedestrians.

Fig. 1: Simulation in CARLA [6]: the ego
vehicle (red, dotted) stops at a stop sign.
The trajectory of its planned left turn is
crossed by an oncoming vehicle (green,
dashed) and by a pedestrian (blue, solid).

Figure 1 shows an example of a
scene with three road users on a T-
junction. The ego vehicle is planning
to turn left. It currently stops at the
stop line of the stop sign on the ego
vehicle’s lane. The other car follows
its lane, going straight over the junc-
tion, and crossing the trajectory of the
ego vehicle. The ego vehicle’s destina-
tion lane contains a crosswalk with a
pedestrian currently crossing the road.
Thus, the pedestrian is crossing the
trajectory of the ego vehicle.

When analyzing the segment, we can observe specific maneuvers, environmen-
tal properties, and features from the viewpoint of the ego vehicle: road type is
T-junction; ego is turning left ; there is oncoming traffic; a stop sign is present;
the ego vehicle does stop at the stop line, since it must yield to another vehicle; a
pedestrian is crossing the destination lane; the weather is sunny during daytime.

These features can be formally described by formulas in a temporal logic over
sequences of scenes. Then, we can use a set of features to classify segments: the
combination of identified features (i.e., corresponding formulas that hold) defines
the scenario class. The segment is one concrete instance of this scenario class.
Assuming that features are not entailed by other features, we obtain 2n scenario
classes from n features. For the more realistic case that some dependencies exist
between features (e.g., no overtaking without multiple lanes), we can use trees
to model taxonomies of features and still compute possible scenario classes and
check if they exist in our data. Variations of features in the example could be:
the ego vehicle drives straight instead of turning left, there is no oncoming traffic,
or no pedestrian is crossing the road. Based on these three variations (neglecting
the other properties for the sake of simplicity), a total of 23 = 8 possible scenario
classes are observable. We can use this information to compute missing scenario
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classes or to measure scenario class coverage on a set of test drives. In our example,
one scenario class was observed. Given the eight possible scenario classes, we
obtain a scenario class coverage of 12.5%. Section 4 formalizes these concepts.

3 A Temporal Logic for Properties of Scenarios

We base scenario classifiers on the environment representation that is usually
produced by the perception sub-system of an automated vehicle: a map of the
road network and typed objects with positions, velocities, and observed states.
We express properties of recorded sequences of scenes (i.e., momentary snapshots
of the environment of the ego vehicle) in a formal logic. We use logic structures to
describe scenes over a given signature of domain-specific functions and relations
(e.g., positions, lanes, vehicles, velocities, etc.). We extend Metric First-Order
Temporal Logic (MFOTL) [3] with a minimum prevalence operator that allows
to express that a property holds for a certain fraction of all future states (within
a finite trace), a corresponding past time version, and a binding operator that
binds the value of a term at the current time to a variable. While the prevalence
operators extend the expressiveness of MFOTL, binding is a shorthand for
existentially quantified formulas of a certain form. We also introduce evaluation
over complex data structures (in the form of further notational shorthands
and conventions) to more easily capture the properties of scenes. We name our
extension Counting Metric First-Order Temporal Binding Logic (CMFTBL).

A signature σ is a tuple ⟨C,F ,R, ar⟩, where C is a set of named constants,
F is a set of function symbols, R is a set of relation symbols, and ar : (F ∪
R) 7→ N0 defines an arity for each function symbol f ∈ F and relation symbol
r ∈ R. A σ-structure D is a pair ⟨D, I⟩ of a domain D and interpretations of
constants, functions, and relations with I(c) ∈ D for c ∈ C, ar(f)-ary function
I(f) : Dar(f) → D for f ∈ F , and I(r) ⊆ Dar(r) for r ∈ R. We write an interval
of the set of non-empty intervals I over N as [b, b′) := {a ∈ N|b ≤ a < b′}, where
b ∈ N, b′ ∈ N ∪ {∞} and b < b′.

Formulas in CMFTBL over the signature σ, intervals I, and the countably
infinite set of variables V

(
assuming V ∩ (C ∪F ∪R) = ∅

)
are inductively defined

as follows:

(i) A term t is either a constant c, a variable v, or for f ∈ F and terms
t1, · · · , tar(f) the application f(t1, · · · , tar(f)).

(ii) For r ∈ R and terms t1, · · · , tar(r), the predicate r(t1, · · · , tar(r)) is a formula.
(iii) For x ∈ V and d ∈ D, if t is a term, φ and ψ are formulas, then (¬φ), (φ∨ψ),

(∃x : φ), and (↓txφ) are formulas, where ↓tx evaluates t in the current state
and binds the result to variable x.

(iv) For I ∈ I and p ∈ R, if φ and ψ are formulas, then next ( dIφ), previously
( tIφ), until (φ UI ψ), since (φ SI ψ), min. prevalence (▽p

Iψ), and past min.
prevalence (▼p

Iψ) are formulas.

The pair ⟨D, τ ⟩ is a finite temporal structure over the signature σ, where
D = (D0,D1, · · · ,Dn) is a finite sequence of structures (i.e., scenes) over σ and
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τ = (τ0, τ1, · · · , τn) is a finite sequence of non-negative rational numbers τi ∈ Q+

with length n. The elements in the sequence τ are (increasing) timestamps.
Furthermore, the interpretations of relations rD0 , rD1 , · · · , rDn in a temporal
structure ⟨D, τ ⟩ corresponding to a predicate symbol r ∈ R may change over
time. The same is true for functions. Constants c ∈ C and the domain D, on the
other hand, do not change over time. More formally, we assume for all 0 ≤ i < n
that τi < τi+1 and for Di = ⟨Di, Ii⟩ and Di+1 = ⟨Di+1, Ii+1⟩ that Di = Di+1.
Moreover, cDi = cDi+1 for each constant symbol c ∈ C.

A valuation is a mapping v : V → D from variables to domain elements. We
write v[x 7→ d] for the valuation v that maps x to d. All other variables are not
affected in the valuation v. We abuse notation by applying a valuation v also to
constant symbols c ∈ C, with v(c) = cD. We evaluate a term t for valuation v
and structure D, denoted by β[t, v,D] as follows. For constants and variables x,
let β[x, v,D] = v(x). For the function application a = f(t1, · · · , tar(f)), let

β[a, v,D] = fD(β[t1, v,D], · · · , β[tar(f), v,D]).

We define the semantics of CMFTBL in terms of the relation (D, τ , v, i) |= φ
inductively, as shown in Table 1, where |τ | denotes the number of timestamps
in the temporal structure ⟨D, τ ⟩ and is mostly used as an upper bound for
intervals of temporal operators. The temporal structure ⟨D, τ ⟩ satisfies formula
φ iff (D, τ , ∅, 0) |= φ.

For I ∈ I and the common Boolean constant ⊤ (for true), we define the usual
syntactic shorthands of operators as follows:

(φ ∧ ψ) :=
(
¬
(
(¬φ) ∨ (¬ψ)

))
logical and

(φ⇒ ψ) :=
(
(¬φ) ∨ ψ

)
implication

(∀x : φ) :=
(
¬(∃x : ¬φ)

)
all quantifier

(♢Iφ) := (⊤ UI φ) eventually

(□Iφ) :=
(
¬
(
♢I(¬φ)

))
always

(♦Iφ) := (⊤ SI φ) once

(■Iφ) :=
(
¬
(
♦I(¬φ)

))
historically

Analogously, we define maximum prevalence operators based on minimum preva-
lence:

(△p
Iφ) := (▽1−p

I ¬φ) max. prevalence

(▲p
Iφ) := (▼1−p

I ¬φ) past max. prevalence

We obtain non-metric variants of the temporal operators for interval [0,∞).
In addition to these commonly used patterns, we introduce several notational
conventions to ease presentation.
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(D, τ , v, i) |= r(t1, ..., ta(r)) iff
(
β(t1, v,Di), · · · , β(tar(r), v,Di)

)
∈ rDi

(D, τ , v, i) |= (¬ψ) iff (D, τ , v, i) ̸|= ψ

(D, τ , v, i) |= (ψ ∨ ψ′) iff (D, τ , v, i) |= ψ or (D, τ , v, i) |= ψ′

(D, τ , v, i) |= (∃x : ψ) iff (D, τ , v[x 7→ d], i) |= ψ, for some d ∈ D
(D, τ , v, i) |= ( dIψ) iff τi+1 − τi ∈ I and (D, τ , v, i+ 1) |= ψ

(D, τ , v, i) |= ( tIψ) iff i > 0, τi − τi−1 ∈ I, and (D, τ , v, i− 1) |= ψ

(D, τ , v, i) |= (ψ UI ψ
′) iff for some j ≥ i, τj − τi ∈ I, (D, τ , v, j) |= ψ′,

and (D, τ , v, k) |= ψ, for all k ∈ N with i ≤ k < j

(D, τ , v, i) |= (ψ SI ψ
′) iff for some j ≤ i, τi − τj ∈ I, (D, τ , v, j) |= ψ′,

and (D, τ , v, k) |= ψ, for all k ∈ N with j < k ≤ i

(D, τ , v, i) |= (▽p
Iψ) iff (D, τ , v, j) |= ψ, for at least fraction p

of indices i ≤ j ≤ |τ | with τj − τi ∈ I

(D, τ , v, i) |= (▼p
Iψ) iff (D, τ , v, j) |= ψ, for at least fraction p

of indices 0 ≤ j ≤ i with τi − τj ∈ I

(D, τ , v, i) |= (↓tx ψ) iff (D, τ , v[x 7→ β(t, v,Di)], i) |= ψ

Table 1: Definition of the semantics of the Counting Metric First-Order Temporal
Logic (CMFTBL), given inductively by the relation (D, τ , v, i) |= ψ. The newly
introduced operators are minimum prevalence (▽p

Iψ), past minimum prevalence
(▼p

Iψ), and binding (↓tx ψ).

Let isV ehicle ∈ R be a unary relation. We define the set of all vehicles
V ⊆ D as {d ∈ D | isV ehicle(d)}. Analogously, we define the set of pedestrians
as P, and the set of actors A := P ∪ V with P ∩ V = ∅. We also use a notation
reminiscent of object-relational element associations. For instance, for some
vehicle v ∈ V and the relations {isEgo, isLane, onLane} ⊆ R, we use shorthand
notations like, e.g., v.isEgo for isEgo(v) and v.lane for the unique l ∈ D where
isLane(l) ∧ onLane(v, l).

Formulas used for specifying features in a tree-based classifier usually consist
of one unary relation that needs to hold for the ego vehicle. For such an r ∈ R
and φ := ∃v ∈ V : □(v.isEgo)∧ r(v), we write ego.r instead of the entire formula
φ. As an example, consider ego.obeyedSpeedLimit to model that the ego vehicle
obeys the speed limit at all times. Using our notational conventions, the relation
is defined as follows:

obeyedSpeedLimit(v) := □
(
v.speed ≤ v.lane.speedLimitAt(v.pos)

)
The associations v.speed and v.pos are functions as introduced before and
speedLimitAt is a function from a position number and a lane to a speed limit
number. For numbers, we assume the relations {eq, neq, lt, gt, leq, geq} ∈ R to
represent the common mathematical comparators {=, ̸=, <,>,≤,≥}, which we
also allow as notation shortcuts.
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With these notational conventions, we can concisely specify traffic rules and
environmental features using CMFTBL formulas and evaluate those on sequences
of scenes. We express each predicate of our case study (cf. Sect. 5) in this way.
For comparison, consider the formula for “the ego vehicle obeys the speed limit
at all times” without these syntactic conventions:

φosl := ∃v ∈ D : □
(
isV ehicle(v) ∧ isEgo(v)

)
∧

□
(
∃l ∈ D : ∃p ∈ D : isLane(l) ∧ onLane(v, l)∧

∧ leq
(
speed(v), speedLimitAt(p, l)

))
We conclude this section with two example formulas from our case study that

utilize the operators introduced by CMFTBL. Consider a relation isInJunction
that decides whether a vehicle v ∈ V primarily drives through a junction during
the analyzed segment. For this, we require the road the vehicle drives on to
be categorized as a junction “for the most part” (e.g., 80%) of the segment. To
express this, we need the newly introduced minimum prevalence operator.

isInJunction(v) := ▽0.8(v.lane.road.isJunction) (1)

We utilize the binding operator to detect a lane change for a given vehicle v ∈ V .
We bind the lane of vehicle v at the current timestamp to a new variable l. In
nested formulas, which might evaluate other (here, later) timestamps, we can
compare the vehicle’s lane value to l to detect a lane change.

changedLane(v) := ↓v.lanel

(
♢(l ̸= v.lane)

)
(2)

4 Classifiers for Scenarios and Metrics on Sets of Scenarios

We want to use CMFTBL formulas to express features of scenarios and classify
recorded driving data into scenario classes. Formally, we assume recorded driving
data to be given as temporal structures ⟨D, τ ⟩ over some fix basic signature
⟨C,F ,R, ar⟩. This basic signature encodes the set of properties that is provided
as information in the data (i.e., objects with positions) and classifications on a
road network with information about lanes, signs, and signals. For the scope of
this paper, we additionally assume that the recorded data is already segmented
into sequences. We use S to denote a set of segments of form ⟨D, τ ⟩. In practice,
segmentation could either be done based on a map or based on classification.

4.1 Classifiers for Scenarios

We organize features hierarchically in trees to account for dependencies between
features (a lane change, e.g., can only occur on a multi-lane road). This enables
us to capture the taxonomies of features found in the 6-layer model or in draft
standards for specifying operational design domains.
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Definition 1 (Tree-Based Scenario Classifier). A tree-based scenario clas-
sifier (TSC) T is a tuple ⟨Q, qr, Γ, λl, λu⟩ with set of nodes Q (i.e., the modeled
features), root node qr ∈ Q, set of edges Γ of type (q, q′, φ) where q, q′ ∈ Q are
source and destination, CMFTBL formula φ is the edge condition, lower bounds
for sub-features of nodes λl : Q → N0, and upper bounds for sub-features of nodes
λu : Q → N0.

We write q
φ−→ q′ for (q, q′, φ). We require T to be a tree rooted at qr. For

q ∈ Q, let c(q) = {q′ | q φ−→ q′ ∈ Γ} denote the children of q. Bounds must be
0 ≤ λl(q) ≤ λu(q) ≤ |c(q)|.

Inspired by feature models, we name certain types of nodes q ∈ Q depending
on their lower and upper bounds (abbreviated notation with parentheses):

(A)ll λl(q) = λu(q) = |c(q)|
E(X)clusive λl(q) = λu(q) = 1
Leaf () λl(q) = λu(q) = 0

(O)ptional λl(q) = 0∧λu(q) = |c(q)|
(a..b)-Bounded λl(q) = a ∧ λu(q) = b

We introduce these bounds on sub-features to compute the number of combina-
torial combinations, i.e., the number of observable scenario classes (cf. Sect. 4.2).
A more precise approach to computing possible scenarios would be to compute
satisfiable combinations of features. Such an approach, however, does not seem
feasible or meaningful. Even if the satisfiability of some fragment of CMFTBL can
be established, there is no mechanism to constrain acceptable models to realistic
segments. A much more useful analysis in the context of our approach (which it
does indeed provide), is to determine which segments (if any) are classified with
feature combinations that are invalid according to the explicit definitions in the
TSC. This information can then be used to refine the tree or find errors in the
data.

Figure 2 shows one of the TSCs developed for our case study (cf. Sect. 5) as
a simple example. All nodes (except for the root node) model features of urban
driving scenarios. In this example, we focus on different features corresponding to
road types. The nodes are labeled with a short description of the feature, followed
by the node type (that defines the upper and lower bounds for the number of
children in classes modeled by this TSC) in parentheses. Each edge from source to
destination is labeled with a formula to recognize the destination node’s feature.
For better readability of the figure, we omit all formulas except for the always
true ⊤ as well as two references to the formulas (1) and (2) presented in Sect. 3.

We can now describe individual scenario classes for a scenario classifier.

Definition 2 (Scenario Class). For a given tree-based scenario classifier T =
⟨Qoqor , Γ

o, λol , λ
o
u⟩, a scenario class is a tree T = ⟨Q, qr, Γ ⟩ with set of nodes Q ⊆

Qo, root node qr = qor , and set of edges Γ of type (q, q′) such that (q, q′, φ) ∈ Γ o.
We require the number of children c(q) for every node q ∈ Q to be within the
lower and upper bounds of q in T.

Let TT denote the (finite) set of all scenario classes for tree-based classifier T, and
let W denote the (infinite) set of observable segments of driving data ⟨D, τ ⟩. We
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Root (A) Road Type (X)

Junction (A) Maneuver (X)
Lane Follow
Right Turn
Left Turn

Single Lane (A) Stop Type (0..1)
Has Stop Sign
Has Yield Sign
Has Rel. Red Light

Multi Lane (A)
Maneuver (X)

Lane Change
Lane Follow

Stop Type (0..1) Has Rel. Red Light

⊤

(1)

⊤

⊤

⊤

⊤
(2)

¬(2)

Fig. 2: Simple example classifier from our case study. Edge labels (1) and (2) refer
to the formulas shown in Sect. 3.

RootClass 1: Road Type Junction Maneuver Right Turn

RootClass 2: Road Type Multi Lane
Maneuver Lane Change

Stop Type Has Rel. Red Light

RootClass 3: Road Type Single Lane Stop Type Has Rel. Red Light

RootInvalid: Road Type Single Lane Stop Type
Has Stop Sign
Has Yield Sign

Fig. 3: Scenario classes (3 of the total 11) modeled by the TSC shown in Fig. 2.
The invalid class violates the bounds of the single lane Stop Type (0..1) node.

denote the classification function that maps observed driving data ⟨D, τ ⟩ to a
scenario class T based on the tree-based scenario classifier T by CT : W → TT. For
recorded data segment S = ⟨D, τ ⟩, we compute CT(S) = ⟨Q, qr, Γ ⟩ by computing
the set Q of nodes, which uniquely determines the set of transitions. We initialize
Q as {qor} and then add every node q′ for which q ∈ Q and (q, q′, φ) ∈ Γ o with
S |= φ until a fixed point is reached. We assume that bounds permit a valid class
to be computed for every realistic segment S and lift CT to sets of segments by
letting CT(S) denote the set of observed scenario classes for S.

In total, the TSC presented in Fig. 2 models 11 different scenario classes, i.e.,
subsets of feature nodes that comply with the bounds given by the node types.
As the main node Road Type is an (X)-node (with bounds λl = λu = 1), the
possible scenario classes are the 3 junction maneuvers plus the 4 single lane stop
type variants (stop sign, yield sign, relevant red light, or none of these) plus 4
possible combinations of multi-lane features (lane change with relevant red light,
lane change without relevant red light, etc.). Figure 3 shows three example classes
as well as one invalid class where stop sign and yield sign are both recognized
at the same time, which violates the bounds of the single lane Stop Type (0..1)
node. Finding such invalid classes in the analyzed data either indicates errors in
the TSC modeling (i.e., in the formulas or bounds) or faulty data (e.g., errors in
map data).
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4.2 Coverage Metrics for Sets of Scenarios

Given a set of recorded segments S and a classifier T, we want to analyze and
quantify if and to what degree the recorded data covers possible scenarios. We
start by showing how to compute the number of scenario classes for a tree-based
scenario classifier T = ⟨Q, qr, Γ, λl, λu⟩. Let Γq = {(q, q′, φ) ∈ Γ} be the set of
edges originating in q, and [Γq]

λl(q)..λu(q) =def

⋃λu(q)
i=λl(q)

[Γq]
i be the set of all

subsets of these edges with size within the lower and upper bounds of q. We
define the size |T| = |qr| recursively as:

|q| =def

∑
G∈[Γq ]

λl(q)..λu(q)

 ∏
(q,q′,φ)∈G

|q′|


The primary metric we are considering is scenario class coverage (SCC),

expressing the ratio between the number of observed scenario classes and the
number of classes modeled by classifier T = ⟨Q, qr, Γ, λl, λu⟩. For a set of recorded
segments S, we define SCC as:

SCC(S,T) =def
|CT(S)|
|T|

It can be expected that gaining high coverage on TSCs with (potentially
multiple combinations of) rare events requires an increasingly high amount of
test scenarios. To measure the individual rarity of the modeled environmental
conditions, from which explanations for coverage gaps might be derived, we
introduce a metric for absolute feature occurrence (afo):

afo(S, q) =def

∣∣{⟨Q, qr, Γ ⟩ ∈ CT(S) | q ∈ Q}
∣∣

In addition to coverage, which only considers if a scenario class has been observed,
we define scenario instance count (sic) to count how often a certain class has
been encountered in a set of scenarios:

sic(S, t) =def

∣∣{S ∈ S | CT(S) = t}
∣∣

Similar to calculating the size of a TSC, we can enumerate all possible scenario
classes and use them to identify class instance missings, i.e., classes as which
no S ∈ S is classified. However, gaining meaningful insights from large sets of
missing classes is difficult. Therefore, we also analyze feature pair misses, i.e.,
pairs of TSC nodes that do not exist together in any observed class.

5 Evaluation

We designed our evaluation as a single case mechanism experiment [37] that
validates the presented approach. We aim at 1) demonstrating that we can express
relevant properties of ODDs in CMFTBL, 2) evaluating to which degree we can
achieve scenario class coverage, and 3) evaluating whether coverage analysis
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Fig. 4: Tree-Based Scenario Classifiers modeled for our experiments. Features (as
well as their paths to the root node) are included in a TSC, if they are marked
with a corresponding colored circle. Bold edges with labels (1) and (2) refer to
the formulas shown in Sect. 3. Formulas for other features are omitted. Based on
the full TSC classifier, which contains all evaluated features, we define multiple
subsets based on the 6-layer model of scenario classification. In total, we define
six classifiers: full TSC, layer 1+2, layer 4, layer 1+2+4, layer (4)+5,
and pedestrian.

generates valuable insights about missing classes. To this end, we identify and
model features for an urban driving environment, define a family of related
tree-based scenario classifiers based on those features, and use these classifiers
for analyzing simulated urban traffic. We chose features to model the types of
properties (or labels) that are envisioned for specifications of operational design
domains (ODDs) as described in BSI 1883 [34] or OpenODD [2]. The remainder
of this section discusses the features and classifiers developed for our case study,
details the experimental setup, presents results from the simulated experiments,
and provides initial answers to the above questions.

Classifiers for the 6-Layer Model. To construct tree-based scenario classifiers
(TSCs) for our case study, we evaluated the 6-layer model of scenario classification
by Scholtes et al. [31] and extracted observable features. In Fig. 4, we visualize
all TSCs developed for this case study at once, using colored circles to indicate
the features included in each TSC. The hierarchic organization of the complete
set of features extracted from the 6-layer model resulted in the full TSC, while
the others focus on individual layers or combinations of layers. Please note: the
layer 1+2 TSC marked with is the one we already presented as an example in
Sect. 4.1 (cf. Fig. 2).

We define features as CMFTBL predicates and formulas. In total, we define
51 predicates (including sub-predicates) to completely express the detection of
the modeled features for our experiments. We use the min. prevalence operator
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Fig. 5: Coverage of scenario classes and distribution of segments over classes

in 16 predicates to model that some feature holds for most of the time during a
segment. For more examples of predicates, please refer to our implementation4

and the preprint version of this paper [28].

Experimental Setup. For recording and classifying scenario runs, we built a
toolchain based on the CARLA simulator [6] and our analysis framework [26].

Based on the classifications of recorded runs, we calculate coverage and the
other metrics introduced in Sect. 4.2. Moreover, we analyze saturation by counting
class coverage over time.

For our experiments, we record 100 simulation runs of 5 minutes each. In
every run, a random map, daytime, and weather is chosen and up to 200 vehicles
and 30 pedestrians are spawned randomly on the map. All vehicles are driven
by CARLA’s autopilot. We analyze each simulation run multiple times: once
with each vehicle being considered to be the ego vehicle. Overall, this results in
113, 767 segments representing 1, 104 hours of driving data. The analysis of this
data with all classifiers and predicates discussed above takes 118 minutes on a
single core of a 2021 Apple M1 Pro SoC.

Experimental Results We visualize our results for scenario class coverage
over the course of analyzed segments in Fig. 5a. Each colored curve represents
the coverage result of one classifier from Fig. 4 and shows its class coverage
percentage in relation to its respective observed scene sequences. The legend
also shows the final count of observed scenario classes for each classifier after
analyzing all 113, 767 segments and the number of possible classes. The layer
1+2 classifier covers 100% of scenario classes after 12, 233 analyzed segments.
Furthermore, layer (4)+5 almost fully covers its possible scenario classes after
around 59, 409 segments but misses one scenario class and therefore only reaches
97% coverage. The pedestrian classifier covers over 90% of relevant scenario
4 https://github.com/tudo-aqua/stars-carla-experiments/blob/main/src/
main/kotlin/tools/aqua/stars/carla/experiments/predicates.kt

https://github.com/tudo-aqua/stars-carla-experiments/blob/main/src/main/kotlin/tools/aqua/stars/carla/experiments/predicates.kt
https://github.com/tudo-aqua/stars-carla-experiments/blob/main/src/main/kotlin/tools/aqua/stars/carla/experiments/predicates.kt
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Fig. 6: Visualization of the absolute feature occurrence of “Dynamic Relations”
for “Multi-Lane” roads. We define a=“Oncoming Traffic”, b=“Pedestrian Crossed”,
c=“Following Leading Vehicle” and d=“Overtaking”.

classes. The classifiers layer 4 and layer 1+2+4 cover 72% and 48% of relevant
scenario classes, respectively. Finally, the reference classifier full TSC reaches a
coverage of 26%.

Figure 5b visualizes the scenario instance count metric of the 175 observed
scenario classes for the layer 1+2+4 classifier. The plot shows a long-tail distri-
bution in which 85, 120 segments of the total 113, 767 segments are classified into
only 15 scenario classes. The remaining 28, 647 segments are classified into the
remaining 160 classes. The three most common scenario classes are each observed
about 11, 000 times. The other classifiers show similar long-tail distributions.

Our analysis provides detailed insights into specific scenario classes regarding
the underlying features and their combinations. To demonstrate the results,
Figs. 6 and 7 visualize analyses on the Dynamic Relation features of the Multi-
Lane node of the TSC (cf. Fig. 4). For better readability in the figures, we
label the observable features as a=“Oncoming Traffic”, b=“Pedestrian Crossed ”,
c=“Following Leading Vehicle” and d=“Overtaking”. We also write (x) or (x̄) if
feature x was observed or not observed, respectively. For example, the combination
(a·b·c·d̄) describes the scenario classes in which Oncoming Traffic, Pedestrian
Crossed and Following Leading Vehicle are observed, while Overtaking is not
observed.

Absolute Feature Occurrence. Figure 6 visualizes the individual absolute occur-
rences of each observable feature for the Dynamic Relations on Multi-Lane roads.
The percentages are based on the 19, 913 analyzed segments classified as contain-
ing the Multi-Lane feature. Here, Oncoming Traffic (a) appears in 95.41% of the
total occurrences. Pedestrian Crossed (b) and Following Leading Vehicle (c) are
similarly present with a coverage of 24.92% and 29.85%, whereas Overtaking (d)
is only encountered in 0.25% of the analyzed segments.

Feature Combinations. As the classifiers (cf. Fig. 4) define the Dynamic Rela-
tion node as Optional, all combinations of the four children form valid scenario
classes. Figure 7 shows the distribution for these combinations. It can be seen
that 98.14% of observed scenarios are covered by the following five feature com-
binations: (a·b̄·c̄·d̄), (a·b̄·c·d̄), (a·b·c̄·d̄), (a·b·c·d̄), and (ā·b̄·c̄·d̄). The 369 other
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Fig. 7: Distribution of all feature combinations of “Dynamic Relations” for
“Multi-Lane” roads. We define a=“Oncoming Traffic”, b=“Pedestrian Crossed”,
c=“Following Leading Vehicle” and d=“Overtaking”.

scenarios are composed of the following combinations: 152 scenarios for (ā·b̄·c·d̄),
143 scenarios for (ā·b·c̄·d̄), 37 scenarios for (a·b̄·c̄·d), 25 scenarios for (ā·b·c·d̄), 9
scenarios for (a·b·c̄·d), and 3 scenarios for (a·b̄·c·d). The five feature combinations
that never occurred – (a·b·c·d), (ā·b·c·d), (ā·b·c̄·d), (ā·b̄·c·d), and (ā·b̄·c̄·d) – each
include feature (d), which directly stems from the overall low occurrence of only
0.25% for feature (d).

Missing Feature Combinations. As discussed, our method yields precise informa-
tion on which scenario classes never occurred. However, a detailed analysis is
not feasible, as the full TSC analysis resulted in 3, 702 unseen classes. With the
analysis of feature pair misses, we instead focus on predicate combinations that
never occurred. This results in the information that the following five predicate
combinations were never observed together: (Overtaking & Lane Change), (Over-
taking & Has Red Light), (Has Stop Sign & High Traffic), (Has Yield Sign &
High Traffic), and (Has Yield Sign & Middle Traffic).

5.1 Discussion

We discuss the experimental results in the context of the three contributions
outlined in Sect. 1.

Specification of Scenario Classes: With our hierarchic structuring of prop-
erties into scenario classifier trees, we were able to express and organize many
relevant features for common driving situations considered in the proposals for
operational design domains [34] and approaches like the 6-layer model [31], as
well as classify recorded driving data according to the different scenario classes
defined by such trees. While our TSC approach (as well as the framework im-
plementation) is generally independent of the logic used to evaluate driving
data, CMFTBL proved particularly helpful. The prevalence operator could be
used to detect properties where it is natural to formulate “majority of the time”
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constraints (like environmental conditions or traffic density). Features we did
not include in our case study were not left out because it was impossible (or
even particularly inconvenient) to express them using CMFTBL, but because we
were not able to automatically extract – with a reasonable amount of effort – the
required information from our simulation setup with CARLA (e.g., yield priorities
in roundabouts, behavior on highway entries, or temporary modifications like
construction work).

Analysis Time: We analyzed a total of 1, 104 hours of data from simulated test
drives, which took a little over 118 minutes. With a total of 113, 767 segments, we
have on average 34.93 seconds of driving data per segment and 62.23 milliseconds
of computation time per segment evaluation. While a more comprehensive scenario
classifier would contain more features, due to the tree-based structure of our
classifier, whole sub-trees get cut off from evaluation if a condition does not hold
(e.g., none of the single-lane features of Fig. 4 are evaluated when the segment is
recognized as a junction). The obtained results thus indicate that our approach
is generally feasible with regard to computation time. Even in-vehicle analysis of
properties while driving (i.e., after completing a segment) seems possible.

Analyses/Metrics: Our experiments show that we can achieve scenario coverage
with hierarchical classifiers. Even though the features evaluated with the classifiers
are limited in scope, they already model more than 5.000 situations in urban
driving. In our experiments, we achieve high coverage and saturation of observed
scenario classes. This is in contrast to Hartjen et al. [12], who analyze saturation
effects in observed maneuvers of multiple vehicles including and around the ego
vehicle. In their analysis, the amount of observed unique sequences shows no
significant saturation over time, indicating that individual maneuvers induce a
space that is too big to be feasible for analyzing scenario coverage.

Our detailed analyses proved particularly useful for the interpretation of the
coverage levels our classifiers converge to: all five feature combinations that are
not encountered at all throughout our data combine a layer 1+2 feature with a
layer 4 feature. Due to the combinatorial nature of our classifier concept, about
half of all combinations in the layer 1+2+4 classifier remain undetected. We can
utilize this information and investigate why certain feature pairs are missed. For
instance, in the three maps we included in our experiments, only a single junction
on a small side road has a yield sign. We are less likely to detect middle or high
traffic density on this road. These insights can be used to plan test drives or as a
basis for analyzing the relevance of specified scenarios in some real environment.

5.2 Threats to Validity

To test our approach, we generated data with CARLA, as this allowed us to
produce a large set of test drives using automated scripts.

Internal Validity. We have not tested our approach on a set of ground truth
data to check our predicates against pre-labeled data. However, we manually
inspected rendered videos of the generated data set to match the actual driving
situations we addressed with our formulas.
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External Validity. As stated in Sect. 2, we focused on analyzing urban driving
scenarios. With our map selection, we could define all relevant predicates for
our experiments. However, other typical urban driving situations comprise, e.g.,
interstate-like roads with on-ramps or roundabouts. In another set of experiments,
we successfully adapted the formalizations of interstate traffic done by [19] and
analyzed their coverage in simulated driving data. For roundabouts, the main
challenge is that the underlying OpenDRIVE data (used by the maps in CARLA)
does not explicitly specify a roundabout’s lane layout.

Concept Validity. When analyzing more complex situations, the specification
might get too large for our approach to be practically usable. Especially as data
from the real world can contain errors and deviations, various complex predicates
and classification trees might become necessary. Our experiments use the perfect
world perception provided by CARLA, which removes the uncertainties of real
sensor data. Analyzing real-world data requires the intelligent handling of such
uncertainties. Predicates then need to consider that the environmental perception,
such as object tracking, has uncertainty. Current research is already addressing
problems in regards to environmental perception [36], such as sensor fusion [8],
or object reference generation [22]. We are confident that with further results
and insights, we can use our min. prevalence operator to deal with uncertainties
or sensor errors in the analyzed data.

6 Conclusion

We have presented a temporal logic for expressing features of driving scenarios
over complex data streams and combining such features into tree-based scenario
classifiers that structure the operational design domain of an autonomous driving
system into relevant scenario classes. On recorded driving data, tree-based scenario
classifiers enable an analysis of scenario class coverage, metrics, and qualitative
analyses that uncover and explain misses. We have evaluated our technique in
simulated urban driving experiments. The results show that we are capable of
achieving full coverage for some scenario classifiers and can reason about the
observed features of the analyzed set of recorded test drives.
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