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Abstract—We present a post-hoc approach for scenario-based
testing of automated driving systems, enabling the analysis
of safety and correctness for (cooperative) automated driving
systems in many scenarios without conducting tests for individual
scenarios. The system under test is operated in its physical envi-
ronment, and data is recorded during operation. Then, driving
scenarios are identified in this data and functional requirements
are checked, yielding pass or fail verdicts for individual scenarios.
We validate the envisioned post-hoc approach in a single-case
mechanism experiment by the example of a platooning controller,
identifying a previously unknown bug in the tested system, as well
as a functional insufficiency concerning the intended operational
design domain.

Index Terms—Scenario Classification, Requirement Monitor-
ing, Automated Driving, Real-World Testing, Scenario-based
Testing, Temporal Logics

I. INTRODUCTION

The development of automated driving systems (ADS) has
made significant progress in recent years. Such systems are
now able to drive autonomously in various environments and
scenarios. Before the widespread adoption of these systems,
it is crucial to ensure they are safe and reliable. Assuring the
safety of these systems, however, is still an open challenge [1].
For limiting the risk to a reasonable level, safety assurance has
to document the safe behavior of an ADS in varied driving
scenarios in its intended operational design domain (ODD).

The ISO 21448 norm [2], e.g., addresses specifically the
safety of the intended functionality of automated driving
systems, as opposed to their functional safety. The norm
mandates that the safety of a system needs to be tested
under all intended environmental conditions and concerning
possible (environmental) triggering conditions that may lead
to hazardous behavior [3]. To achieve this, a catalog of known
scenarios must first be identified and used in testing. However,
recognizing that exhaustive testing of all possible scenarios
is unfeasible, ISO 21448 further mandates the exploration
and estimation of unknown scenarios. The norm recommends
a range of methods, including fleet tests, field experience,
simulation, and real-world scenario exploration, to evaluate
an ADS’s performance under untested hazardous conditions
and to assess the residual risk from these unknowns.
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Fig. 1. Post-hoc scenario-based testing: Data is recorded from physical system
during (test) operation. Features on recorded data are used to model scenarios
and functional requirements. The STARS framework classifies scenarios and
computes test verdicts of monitors.

Despite the norm’s mandate for the estimation of resid-
ual risk, little research has specifically addressed the real-
world testing of unknown scenarios [4]. Much of the existing
academic work has focused on developing methods for the
identification of triggering conditions [5] and for scenario-
based testing [6], [7], [8] of known scenarios. Most of these
works envision simulation as a testing method since it is
relatively easy to simulate different driving scenarios and
triggering conditions. While simulations can test the software
of a system, real world testing is needed to ensure that the
whole system behaves safely in the physical environment.

Runtime verification [9] has been suggested as one method
for checking functional requirements during operation. While
it certainly is helpful to monitor functional correctness during
the operation, this alone is not sufficient for ensuring a



system’s safety and requires additions to a deployed system
which would also require safety assurance.

In this paper, we present a method for gaining insights
about the intended functionality in unknown scenarios in real
word tests. Building on concepts from scenario-based testing,
our approach implements system-level, post-hoc analysis that
monitors safety and correctness in real-world settings, such as
test fleets. The approach, sketched in Fig. 1, involves a system
under test that is operated in its physical environment (e.g., as
part of a test fleet or field test) while data is recorded during
operation (e.g., sensor data, communication messages, actuator
signals). Then, driving scenarios are identified in this data and
functional requirements are monitored offline, yielding pass or
fail verdicts.

This process not only reveals system insufficiencies during
actual operation but also provides detailed insights into the
conditions under which these issues arise. By continuously
monitoring both encountered scenarios and the system’s in-
tended functionality, our method enables a proactive explo-
ration of unknown scenarios and the identification of unex-
pected hazardous conditions in accordance with ISO 21448.

In previous works, we have developed a conceptual and
technical framework for the specification of scenario features
on sequences of recorded data, the feature-based classification
of scenarios, and the analysis of scenario coverage [10], [11].
In this paper, we extend this framework by monitoring of
functional requirements.

We demonstrate the approach in a single-case mechanism
experiment with model-scale vehicles and a (cooperative)
automated driving system. The goal of the experiment is
twofold: we aim to validate (a) the feasibility and (b) the
usefulness of determining success or failure with respect to
requirements for scenario-based tests extracted from recorded
data.

Our results show that we can identify driving scenarios
in recorded data and establish a meaningful connection to
requirements. This allowed us to find a previously unknown
bug in the studied system as well as a functional insufficiency
with respect to its intended operational design domain. The
experiment data is publicly available on Zenodo [12] and the
open-source Kotlin implementation on GitHub1.

Related Works. Validating requirements through testing has
been the subject of only a few studies, underscoring an ongo-
ing research challenge, as highlighted by Fakhfakh et al. [13].
André et al. [14] introduce a method for testing service-
based component models. Similar to our case study, vehicle
platooning primarily serves as a demonstration of the method
rather than focusing extensively on testing the platooning
system itself.

Ponn et al. [15] present an approach to identify challenging
scenarios for automated vehicles using real driving data by
applying a hierarchical clustering and rule-based classification.
Their work focuses on finding a reduced set of appropriate
test scenarios based on their complexity. This is in contrast to

1https://github.com/tudo-aqua/stars-auna-experiments

our work, as we are identifying scenarios based on triggering
conditions.

Khastgir et al. [16] state that focusing on testing ADS in
hazard-based scenarios is a fundamental consideration for the
safety-assurance of these systems. While their focus is on
identifying hazardous test scenarios, our approach similarly
identifies scenarios where monitors detect violations of func-
tional and safety requirements.

Peng et al. [17] employ timed automata, emphasizing crash
prevention and safe distance determination between vehicles
of different speeds. Similarly, we utilize temporal logic to
validate safety properties.

Outline. The paper is structured as follows. Section II provides
an overview of preliminary concepts. The platooning case
study is described in Sect. III. We outline the experiment setup
in Sect. IV, present the results in Sect. V, and discuss them in
Sect. VI. The paper is concluded in Sect. VII and future work
is outlined in Sect. VIII.

II. PRELIMINARIES

We use temporal logic to model features of scenarios and
functional requirements of vehicles as properties on finite
traces of recorded data. Scenarios represent specific driving
situations (e.g., “Vehicle enters curve with high speed”) iden-
tified by a set of observed features (e.g., “entering curve”
and “high speed”). Monitors validate the system behavior
by checking requirements (e.g., “the vehicle maintains a
safe distance to the preceding vehicle”). We provide a short
introduction to the temporal logic used in this paper (with only
an informal sketch of its semantics) and the concepts of traces,
features, scenarios, and scenario classification.

Traces of Recorded Data. The presented analysis splits the
recorded data taken from the model vehicle experiment setup
into finite sequences called segments. The data has global
timestamps provided by ROS2 [18] that are used for the
communication of the sensors. For every timestamp, the data
contains lists of objects with properties. These objects are
described using a fixed set of domain-specific concepts (e.g.,
vehicles with positions and velocities, and communication
messages) represented as functions and relations.

Counting Metric First-Order Temporal Binding Logic. We
model properties over segments in Counting Metric First-
Order Temporal Binding Logic (CMFTBL) [10], an extension
to MFOTL (Metric First-Order Temporal Logic) [19] and LTL.

In this paper we use the LTL operators Globally and
Eventually . From the CMFTBL extensions we require the
Binding operator and MinPrevalence . These allow us to
compare values between different states and to reason about
partial satisfaction durations of (sub-)formulas. An interval
I := [a, b), with a ∈ N0, b ∈ N ∪ {∞} and a < b introduced
in MTL further restricts the timestamps in the sequence, that
are evaluated by the operator. If an operator has not specified
an interval I , we analyze the formula for the remaining
timestamps in the sequence, assuming the interval [0,∞).
The semantics of the logic is formally defined in [10]. Here,
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Fig. 2. Exemplary traces and evaluations of CMFTBL operators at t1

we describe the semantics of the operators needed for this
paper informally. Let φ be a formula:

( I φ) φ holds for every timestamp in the interval I .
( I φ) φ holds for at least one timestamp in the interval

I .
( p

I φ) φ holds in at least fraction p of the timestamps
within interval I .

( t
v φ) Evaluates term t in the current timestamp, bind-

ing (“saving”) the result to variable v for future
reference.

We also require the Boolean operators ∧, ∨, ¬, the impli-
cation =⇒ , and the arbitrary tautology ⊤.

To provide an intuitive understanding of the operators
used in this paper, we give concrete examples here. The
formula [0,5] v.vel > velmax evaluates whether the velocity
of vehicle v exceeds the given maximum velocity velmax

at least once within the next 5 s. Similarly, the formula
[0,5] v.vel ≤ velmax evaluates whether the velocity of v

stays below the maximum velocity in all timestamps in the
next 5 s. The formula 0.5 v.vel > v0 requires the property
v.vel > v0 (i.e. the velocity of vehicle v is greater than v0) to
appear in at least 50% of timestamps in the analyzed segment.
An illustration of these three operators is given in Fig. 2.
Here, three example traces are provided that mark whether
the predicate φ holds at each of the timestamps t1 through t5.
The example evaluation of the three operators is performed
for timestamp t1. The results are marked on the right side.

Lastly, the formula v.pos
p0

( |p0 − v.pos| > d) uses the
binding operator, which freezes the position of vehicle v at
the first timestamp to a new variable p0. In the nested formula

|p0 − v.pos| > d, which evaluates later timestamps, the
position difference between the two timestamps is calculated
and checked whether it eventually exceeds a threshold of d.

Tree-based Scenario Classification. We model and identify
scenarios in segments of recorded data by using a set of
features (specified in CMFTBL). These features describe con-
ditions that are observable in the recorded data; for example,
the feature “strong acceleration” holds if an acceleration value
of over 2m/s2 is observed anywhere in the analyzed segment.

Formally, we utilize a tree-based scenario classifier [10]
(TSC) to organize features and their sub-features in a hier-
archical tree structure. This tree reflects the taxonomy and
semantic structure of the features within the ODD that the
system is intended to operate in. Each node in the tree

represents a specific feature, and the edge connecting to a node
is labeled with a CMFTBL formula that defines that feature.
Additionally, each node is associated with bounds that specify
the minimum and maximum number of child feature nodes
that may occur simultaneously. These bounds are defined as
follows:

(A)ll = |child nodes|
(O)ptional = 0..|child nodes|
(a..b)-Bounded = a..b

E(X)clusive = 1
Leaf() = 0

All possible feature combinations define the set of classifi-
able scenarios. Based on the TSC, we determine which edge
formulas in a segment evaluate to true, resulting in one of
these scenarios.

The key point here is that specific combinations of scenario
features may form triggering conditions for the system to fail.
It is therefore necessary to classify the recorded data into
scenarios and then link them to system failures. By doing this,
valuable insights are gained into the scenarios where failures
occurred, helping to identify the source of failures.

As a basis for the work presented in this paper, we use the
open-source framework STARS2 that implements the concepts
sketched above.

III. CASE STUDY: THREE-VEHICLE PLATOONING

Our evaluation is based on the platooning setup by
Krieger et al. [20], which uses the AuNa framework
by Teper et al. [21]. In this setup, there are three
F1/10 [22] vehicles (cf. Fig. 3), which form a pla-
toon on an oval racing track, representing a scaled-down
version of the Aldenhoven Testing Center race track.

Fig. 3. The F1/10 vehicle

The resulting track has a lane
width of 1.4m. The vehicles have
a width of 0.2m, a length of
0.4m, and a target velocity of
3m/s. Each vehicle in the platoon
uses a CACC controller [23] for
longitudinal and lateral control.
The control relies on two inputs.
First, each vehicle has a global map of the center line of the
track to stay on the track and knows its global position using
a motion capture system. Second, the vehicles broadcast their
current state to the other vehicles in the platoon. This data
includes the vehicle’s position, orientation, velocity, longitu-
dinal acceleration, steering angle, and yaw rate. Each vehicle
only uses the data of its immediate predecessor to calculate an
appropriate acceleration and steering angle to stay on the lane
while maintaining a safe distance to the vehicle in front. This
distance is calculated based on a static distance headway and
a time headway. Furthermore, for the leading F1/10 vehicle,
a virtual leading vehicle is calculated that moves with the
target velocity of the platoon. This virtual leading vehicle is
calculated using the waypoint data and target velocity and also
features an appropriate deceleration and acceleration in curves.

2https://github.com/tudo-aqua/stars/
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Fig. 4. Visualization of the acceleration values on the test track for the last
vehicle in the platoon and marked lane segments around the track.

For the communication, the vehicles use Cooperative
Awareness Messages (CAMs), as defined by the ETSI ITS-
G5 standard [24]. This standard defines the format of the
messages, as well as the rules for transmission. A new message
must be transmitted when one of the following conditions is
fulfilled:

• The position changed by more than 0.4m. (C1)
• The velocity changed by more than 0.05m/s. (C2)
• The heading changed by more than 4◦. (C3)
• The elapsed time since last CAM is ≥ 1 s. (C4)

Here, C1 and C2 are modified from the ETSI ITS-G5
standard according to the 1/10 scale of the vehicles.

The test track consists of two straight lane sections and two
curves of different radii. We split each of those into three
subsections of equal length to distinguish between entering,
exiting, and driving in the middle of that section (cf. Fig. 4).
At any point in time, we know in which of those 12 sections
a vehicle is currently driving.

IV. EXPERIMENT SETUP:
TESTING THE PLATOONING CONTROLLER

We conduct the single-case mechanism experiment by using
the approach sketched in Fig. 1 to test the platooning con-
troller. For this, firstly, we merge all received messages into
one ordered trace, then we apply a segmentation to the trace,
identify features of driving scenarios that classify segments
as scenarios, and finally formalize test oracles that monitor
functional requirements.

First, the recorded data is synchronized and merged into
a timely-ordered trace for later analysis (cf. Sect. IV-A).
This trace is then segmented into semantic units based on
acceleration phases (cf. Sect. IV-B). The driving scenarios are
formalized and hierarchically structured using a Tree-based
Scenario Classifier, with details on the TSC and associated
predicates provided in Sect. IV-C. Finally, monitors addressing
driving safety and communication requirements are introduced
in Sect. IV-D.

A. Alignment of recorded data

The recorded data (30 laps, taking about 8 minutes) consists
of unsynchronized ROS2 messages published by the vehicles
and the Vicon motion capture system, each containing a
timestamp. Ordering all messages by their timestamps yields
a time-accurate ordered trace of vehicle states. With each new
message, we update the global vehicle state with the newly
sent information and keep all remaining property values from
the previous vehicle state. Technically, the sent information is
divided into four message types:

• VICON_POSE (position and rotation),
• ODOMETRY (velocity and acceleration),
• CAM (Cooperative Awareness Messages),
• ACKERMANN_CMD (steering angle).

The resulting data model can be found in the open-source
repository for this paper1. The trace of vehicles states can then
be sliced into reasonable analysis segments.

B. Segmentation of recorded data

Using the STARS framework, we evaluate the data recorded
in the experiments. First, the trace needs to be sliced into se-
mantic segments, in order to identify the scenario in the current
driving situation. Since the vehicle’s current acceleration is the
central control point of the platooning controller, we segment
the data based on this value. We provide a simple segmentation
function that slices the data into alternating sections of acceler-
ation and deceleration phases. Figure 5 exemplarily illustrates
the acceleration values of the last vehicle for about two
seconds and the resulting three partially overlapping segments,
including the slicing points. This overlap ensures that there
remains enough analyzable data around each tick of data,
avoiding a loss of context around possible triggering condi-
tions. We use ± 0.4m/s2 as an overlapping interval, which has
experimentally proven to be a fitting value for this scenario,
so that ticks inside this window belong to both adjoining
segments. That means, in each acceleration phase, there are no
ticks with acceleration < −0.4m/s2 and in each deceleration
phase, there are no ticks with acceleration > 0.4m/s2. The
acceleration values of the last vehicle for the whole experiment
is visualized in Fig. 4.

This segmentation method is based on Peters et al. [25],
where data slicing was learned using automata learning.
Slicing the 377,568 ticks of data for the second and third
vehicle by the acceleration window yields a total of 673 and
622 partially overlapping segments containing 481,009 and
492,696 ticks respectively. We ignore the first vehicle since it
only follows the virtual leading vehicle and is not constrained
by the driving behavior of an actual preceding vehicle.

C. Features of Driving Scenarios

To classify the scenarios encountered by the vehicles during
the experiment, we define various scenario features which we
grouped into two categories: on the one hand, we distinguish
the driving situations which describe what the vehicle is
confronted with. On the other hand, we identify driving
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maneuvers that the vehicle decides to take. Figure 6 shows
these two groups with their corresponding features hierarchi-
cally organized in a TSC. A specific scenario that could, for
instance, be encountered is that the vehicle drives through the
exit of the wide curve with a high distance to the front vehicle
while driving with a low steering angle at low velocity, but
with strong acceleration. All edge conditions of the TSC that
are not depicted in Fig. 6 are described below.

Driving situations. We classify the driving situations mainly
by the information considered by the CACC controller to
calculate the next action. This includes the road curvature,
the distance to the preceding vehicle, and the current velocity.
The threshold values for the classification (e.g., hard steering)
as well as the corresponding CMFTBL formulas to identify
this feature in a segment are given in Table I.

Driving maneuvers. The CACC controller only controls the
current acceleration and steering angle. The threshold values
and formulas for the classifications are given in Table II. Due
to the segmentation method, exactly one of the two predicates,

TABLE I
THRESHOLD VALUES AND PREDICATES FOR DISTANCE AND VELOCITY

Distance Threshold values CMFTBL predicate

High (3m,∞) v.pos
p0

d(p0, v.pos) > 3
Normal [1.5m, 3m] v.pos

p0
d(p0, v.pos) ∈ [1.5, 3]

Low [0m, 1.5m) v.pos
p0

d(p0, v.pos) < 1.5

Velocity Threshold values CMFTBL predicate

Max (2.75m/s,∞) 0.5 v.vel > 2.75
High [2m/s, 2.75m/s] 0.5 v.vel ∈ [2, 2.75]
Low [0m/s, 2m/s) 0.5 v.vel < 2

TABLE II
THRESHOLD VALUES AND PREDICATES FOR ACCELERATION AND

STEERING ANGLE

Acceleration Threshold values CMFTBL predicate

Strong (2m/s2,∞) v.acc > 2
Weak (0.4m/s2, 2m/s2] v.acc > 0.4 ∧ ¬Strong(v)

Deceleration Threshold values CMFTBL predicate

Strong (−∞,−2m/s2) v.acc < −2
Weak [−2m/s2,−0.4m/s2) v.acc < −0.4 ∧ ¬Strong(v)

Steering Threshold values CMFTBL predicate

Hard (10◦,∞) |v .angle| > 10
Low [2.5◦, 10◦] |v .angle| ≥ 2.5 ∧ ¬Hard(v)
No [0◦, 2.5◦) |v .angle| < 2.5

either acceleration or deceleration, holds for each segment.
For the classification of the steering angle, only the maximum
observed steering is considered. For example, we define low
steering if, in this segment, there eventually is a steering angle
of over 2.5◦ in the given interval, and hard steering is not
observed in the whole segment.

D. Monitors for Functional Requirements

To validate safety-critical properties of the platooning con-
troller, we use global monitors in the STARS framework.
These observe the behavior throughout the whole experiment
and report violations of the defined properties including the
timestamp, current segment, and the classified scenario. In
contrast to classical safety monitoring, this enables the cat-
egorization of critical instances that lead to a system failure
or misbehavior, and therefore helps to identify critical com-
binations of environmental conditions and the current control
state. With this, we can identify triggering conditions that may
lead to a violation of the safety requirements. For the definition
of the monitors, we apply the same logic as for the scenario
classification.

The monitors are grouped into two categories: driving safety
and communication safety.

Driving safety monitors. The first group contains monitors
regarding the safe operation of the system concerning the
driving maneuvers. The platooning vehicles are following the
waypoints of the lane. First, we check for the lateral offset of



the vehicles to the middle of the lane to ensure that the vehicles
do not leave the track. As the track has a width of 0.7m in both
directions, we choose 0.4m as the threshold for lateral offset,
as exceeding this value would bring the vehicles too close to
the edge of the track. Therefore, we monitor the lateral offset
for all vehicles v ∈ V using the following formula:

maxLateralOffset(v) := v.lateralOffset ≤ 0.4

Second, in a platooning case, vehicles must maintain a
consistent distance to the preceding vehicle. The distance
should not be too short, as this might cause accidents, but
also not too far, as the vehicle then might lose connection. The
function d(p0, p1) calculates the Euclidean distance between
positions p0 and p1. Let vp be the preceding vehicle of v ∈ V
for the following formulas.

For the minimum distance to the preceding vehicle, we take
the braking distance based on the current velocity of vehicle
v as the safety-critical threshold, conservatively assuming the
velocity of vp to be 0m/s.

minDistance(v) := d(v.pos, vp.pos) > (0.36× v.vel)2

For the maximum distance, we take the threshold for high
distance (3m) plus 25% as the safety-critical value. The
monitor is similarly defined as the minimum distance:

maxDistance(v) := d(v.pos, vp.pos) < (3× 1.25)

Third, especially in platooning scenarios, emergency brakes
are dangerous. Therefore, we check that the vehicles never
brake harder than 3m/s2.

maxDeceleration(v) := v.acc > −3.0

Communication monitors. The vehicles use CAM messages
and should, therefore, comply with the format and rules of
the underlying standard. For each of the conditions (C1)-(C4)
defined at the beginning of this section, we implemented a
corresponding monitor. For each communication message, we
assert an arrival within 5ms from the time they should have
been sent. First, a position change by more than 0.4m should
send a new CAM message (C1). This monitor builds upon
multiple predicates:

camMessagePositionChange(v) :=
v.pos
p0

(
isCAM(v) =⇒

(
noMorePositionChanges(v)

∨
(

d(p0, v.pos) ≥ 0.4 ∧ nextCAMInTimet=5(v)
)))

The first part of the monitor checks whether a position change
occurs in the remaining data stream.

noMorePositionChanges(v) := v.pos
p0

d(p0, v.pos) < 0.4

Then we check whether there is another CAM message within
tms or the stream of data ends.

nextCAMInTimet(v) := [0,t] v.source = CAM ∨ ¬ [t,∞] ⊤

Similarly, we define a monitor for velocity changes (C2)

camMessageSpeedChange(v) :=
v.vel
v0

(
isCAM(v) =⇒

(
noMoreSpeedChanges(v)

∨
(

|v0 − v.vel | ≥ 0.05 ∧ nextCAMInTimet=5(v)
)))

noMoreSpeedChanges(v) := v.vel
v0

|v0 − v.vel | < 0.05

and heading changes (C3).

camMessageHeadingChange(v) :=
v.heading
h0

(
isCAM(v) =⇒

(
noMoreHeadingChanges(v)

∨
(

headingChange(h0, v.heading) ≥ 4

∧ nextCAMInTimet=5(v)
)))

noMoreHeadingChanges(v) :=
v.heading
h0

headingChange(h0, v.heading) < 4

headingChange(h0, h1) := ((h0 − h1 + 180) mod 360)− 180

Finally, the controller has to send a CAM message at least
every 1 s (C4) (+ 5ms slack).

nextCAMMessageWithin1000ms(v) :=(
isCAM(v) =⇒ nextCAMInTimet=1005(v)

)
V. EVALUATION:

MONITOR VERDICTS FOR TEST DATA

The monitor for the maximum deceleration value failed
64 times, indicating that the vehicles had to perform this
many emergency braking maneuvers. Utilizing the associated
scenarios from our recorded data, we pinpointed the trig-
gering conditions responsible for these critical situations. As
demonstrated in Fig. 7 and Fig. 4, the majority of these hard
braking events occurred within or immediately before the tight
curve section. Analyzing the driving data further revealed that
the vehicles consistently entered this curve segment at high
speeds. Due to this, the vehicles followed trajectories with
turning circles too large for the track geometry, resulting in
emergency braking to avoid leaving the track.

The intense braking maneuvers resulted in three occurrences
of the third vehicle losing the connection to its preceding
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vehicle, as captured by the failing monitors for maxDistance.
Simultaneously, the monitor for maxLateralOffset also failed,
indicating that the vehicle had nearly exited the track by cut-
ting across the tight curve directly into the subsequent straight
lane section, as depicted in Fig. 4. The aggregated data and
subsequent analysis clearly highlight that the vehicles consis-
tently followed the trajectories of their immediate predecessors
without independently adjusting their trajectory according to
the specific track geometry. This explicit behavioral pattern
was observable in the recorded data, even without prior knowl-
edge of the programmed controller logic. Such shortcomings in
trajectory planning and environmental awareness could lead to
critical or hazardous situations, especially in real-world driving
scenarios with dynamic traffic conditions. These findings were
subsequently visually inspected through additional simulations
to confirm the identified critical conditions.

Additionally, the monitor for the CAM messages on speed
changes failed 126 times. Detailed analysis of this issue
allowed us to pinpoint a specific bug within the controller
software: a missing absolute value calculation in the logic
handling speed change events. Consequently, the controller
erroneously triggered CAM messages only upon increases
in speed, neglecting necessary notifications when speed re-
ductions occurred. This not only violated the ETSI ITS-G5
standard for Cooperative Awareness Messages but this may
also have significantly degraded communication reliability
within the vehicle platoon.

The insights gained through this extended evaluation
demonstrate the value of the combination of scenario analysis
and monitoring.

VI. DISCUSSION

We applied global safety monitoring combined with sce-
nario classification to identify bugs and undesired behaviors of
the analyzed platooning controller. In contrast to per-scenario
testing, no explicit test setup is required to expose the system
to various situations. Instead, the system is evaluated in its
natural environment, and the recorded data is then classified
post-hoc.

Using this scenario-based testing approach, we successfully
located a previously undiscovered software bug, affecting the
correctly timed communication of the controllers. Further-
more, the tight curve radius of the track was revealed as a
problematic driving situation for the platooning vehicles. The
combination of failing monitors and scenario classification
enabled us to identify this as a triggering condition for the
system: entering the tight curve at high speed, caused emer-
gency braking, which is then followed by loss of connection
with the preceding vehicle. This behavior also led to vehicles
leaving the track by short-cutting through the curve.

Moreover, we detected a functional insufficiency in the
implementation of the CACC controller with respect to the
requirements of the ETSI ITS-G5 standard for CAM messages.

For our experiments we used the criteria and their thresholds
of the ETSI ITS-G5 standard (cf. C1-C4) and values of
the platooning controller implementation (cf. Tabs. II and I).

It should be noted that the discretizations and thresholds
applied must be defined by the respective operational design
domain or be derived from applicable legislative texts. These
thresholds critically influence the interpretation of scenario
features and the validation of system behavior. In lack of
concrete requirements for our use-case, we defined thresholds
based on our experience, which may differ, when applying our
approach to other domains.

A further limitation of our study stems from the use of
a highly accurate motion capture system for sensor data
acquisition. While this ensures precise measurements, it may
not reflect the inherent uncertainties present in real-world
sensor systems. Consequently, the high fidelity of our sensor
data might limit the generalizability of our findings to systems
operating under less controlled sensing conditions.

VII. CONCLUSION

This paper presented a post-hoc evaluation of driving data
from a platooning use-case, utilizing the STARS framework
for analysis. We introduced global safety monitoring accom-
panying scenario classification to systematically investigate
triggering conditions that result in system misbehavior. This
methodology led to the identification of both a previously
undetected software bug and a functional insufficiency con-
cerning the intended operational design domain.

By leveraging existing data from the system’s operation in
a realistic environment, this approach minimizes the need for
labor-intensive and explicit scenario design. This enables a
more scalable and efficient way of validating automated driv-
ing systems. Our findings demonstrate that post-hoc scenario-
based testing can serve as a method that supports classical
approaches of uncovering both requirement violations and
software insufficiences in controller logic.

The experiment setup relied on the formal definition of
predicates for driving situations, maneuvers, and functional
requirements. These were derived directly from the ETSI ITS-
G5 standard and from threshold values of the platooning
controller implementation.

Our work introduced the value of combining scenario
classification with safety monitoring in post-hoc evaluations,
especially in contexts where real-world data collection is
feasible, and explicit scenario design is impractical.

VIII. FUTURE WORK

As future work, we intend to take scenario class coverage
and the distribution of feature combinations into consideration
in order to argue about the completeness of automated driving
system testing. Furthermore, we plan to (1) infer scenario
descriptions from missing feature combinations to automat-
ically generate simulation setups for the system under test,
and (2) plan optimal routing instructions to cover missing
features in real-world testing. By enforcing exposure to various
feature combinations, we aim to identify edge cases inducing
triggering conditions that lead to system failures.

In ongoing research, we are also investigating the impact of
unknown or unclassifiable data points on scenario classifica-
tion and coverage metrics. This includes assessing how well



the system generalizes to new, unanticipated situations and
how such data can be integrated into the scenario classification
process.

Additionally, we plan to inject artificial software bugs and
faults into the system under test to evaluate the sensitivity
and effectiveness of our monitoring framework in detecting
various classes of errors. This fault injection will help quantify
the robustness of our approach in identifying functional and
safety-critical issues.

Lastly, we aim to scale our methodology to real-world
driving situations. For this, we are preparing experiments
utilizing a sensor-equipped bicycle, representing sensor setups
commonly found in automated driving systems. This will al-
low us to explore scalability challenges and apply our scenario-
based testing approach to actual traffic data, providing insights
into its practical deployment and limitations in more complex,
uncontrolled environments.
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