
Continuous Integration of Neural Networks in
Autonomous Systems⋆.

Bruno Steffen1[0000−0003−1769−1824], Jonas Zohren1[0000−0001−9392−7582], Utku
Pazarci1[0000−0001−7595−2901], Fiona Kullmann1[0000−0001−5858−0659], and

Hendrik Weißenfels1[0000−0001−7001−1037]

Technische Universität Dortmund, 44149 Dortmund, Germany
http://www.tu-dortmund.de/

Abstract. The perception of the autonomous driving software of the
FS223, a low-level sensor fusion of Lidar and Camera data requires the
use of a neural network for image classification. To keep the neural net-
work up to date with updates in the training data, we introduce a Con-
tinuous Integration (CI) pipeline to re-train the network. The network
is then automatically validated and integrated into the code base of the
autonomous system. The introduction of proper CI methods in these
high-speed embedded software applications is an application of state-
of-the-art MLOps techniques that aim to provide rapid generation of
production-ready models. It further serves the purpose of professional-
izing the otherwise script-based software production, which is re-done
almost completely every year as the teams change from one year to the
next.

Keywords: ML Ops · Continuous Integration · Neural Networks.

1 Motivation and Background

Since 1981 SAE international2 hosts the Formula SAE, a student design com-
petition where teams around the world design and manufacture formula-style
racing cars. The Formula SAE requires that major design decisions and imple-
mentations must not be made by professionals, but rather by students. This
paper is written by members of the German team of TU Dortmund University,
GET racing3, who work on the autonomous driving capabilities of their vehicle
as the competitions have started featuring a driverless format.

⋆ This version of the contribution has been accepted for publication, after peer re-
view (when applicable) but is not the Version of Record and does not reflect post-
acceptance improvements, or any corrections. The Version of Record is available
online at: https://doi.org/10.1007/978-3-031-49252-5_21. Use of this Accepted
Version is subject to the publisher’s Accepted Manuscript terms of use https://www.
springernature.com/gp/open-research/policies/accepted-manuscript-terms

2 SAE international is a standards developing organization for engineers, see: https:
//www.sae.org/

3 GET racing participates annually in the events since 2005, see https://www.

get-racing.de/

http://www.tu-dortmund.de/
https://doi.org/10.1007/978-3-031-49252-5_21
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.sae.org/
https://www.sae.org/
https://www.get-racing.de/
https://www.get-racing.de/


2 B. Steffen et al.

In this paper, we discuss a solution within the software stack that is devel-
oped to enable the latest vehicle manufactured by GET racing (the FS223) to
autonomously participate in the racing events on Formula SAE-compliant racing
tracks. The software is designed to be safe and reliable but is also complex and
requires a diverse set of software components. These components range from the
perception of the environment to the processing of the recorded data and finally
to the transmission of commands to the underlying actuators in the vehicle for
steering and acceleration.

The presented solution is part of the perception component, where the chal-
lenge lies in the recognition of track-specific features. These are colored cones
marking the edge of the track. To solve this issue, camera images are classified by
a neural network as portraying blue, yellow, or orange cones, or alternatively, no
cones at all. However, while the actual task of image classification is not partic-
ularly unique, the circumstances under which this network has to be developed,
trained, and maintained are unusual.

On the one hand, GET racing as a student team does not have a lot of capital
to invest in computational power that is crucial for the training of complex neural
networks. As a consequence, the decision was made to use a fairly simplistic and
lightweight neural network, building a framework around it that constantly uses
the available computing power. On the other hand, the dataset used for the
training of the network is not static, instead, it changes on a weekly basis. The
original dataset does not generalize well to real life as it does not cover a wide
variety of scenarios, resulting in the misclassification of many cones when testing
on the field. Consequently, the team adds new data to the dataset after every
test run. The network’s performance can hence increase on a weekly basis, if and
only if it is retrained or improved with the updated dataset.

Overall, to enable the work with limited computational power as well as an
ever-changing dataset, we present a solution to continuously train and validate
the neural network when one of the base components for the training of the
network changes. The presented solution aims at the rapid generation of machine
learning models through automation using CI-pipelines.

In section 1.1 a discussion about related work takes place to put this paper in
the context of the machine learning landscape. Section 2 introduces all concepts
that are required for the understanding of the paper. In section 3.1, the approach
and important implementation details are explained. The solution is evaluated
in section 4 and future prospects are described in section 5.

1.1 Related Work

Traditionally ML-based approaches are based on a data-centric design containing
the data acquisition, analysis, and preparation for the ML models, also known
as the CRISP-DM model [15], depicted in fig. 1.

While the focus typically lies in the design and training of the models, a
paradigm called MLOps coins the idea to improve and accelerate the process
for providing production-ready software [5]. One recent and well-known applica-
tion by Tesla is described by Andrej Karpathy’s Ted Talk called “AI for Full-Self



Continuous Integration of Neural Networks in Autonomous Systems. 3

Data
Understanding

Data
Preparation

Modelling

Data
Data

Data

Business
Understanding

Deployment

Evaluation

Fig. 1: Crisp-DM Process Model for Data Mining (edited from [15]).

Driving at Tesla”. Their approach uses continuous integration to constantly feed
critical sensor data of vehicles into their supercomputer Dojo [9] for NN refine-
ment. This approach aims at the improvement of the network for edge cases.
While the project of Tesla vastly exceeds the complexity proposed in this paper,
we also present an MLOps approach to continuously improve a neural network
through automation. We do this by applying DevOps techniques such as con-
tinuous integration to the machine learning process, a workflow that was also
presented and evaluated by Karamitsos et al. [4].

2 Preliminaries

This section introduces basic concepts and the overall software architecture for
easier comprehension of the ideas and implementations shown in section 3. In
section 2.1, we discuss the DevOps tools that are used to build our development
framework. Section 2.2 introduces the theory behind image classification using
neural networks. Finally, section 2.3 presents the operational software pipeline
that is used for autonomous driving.

2.1 DevOps Tools

To solve a difficult task such as autonomous driving, a certain level of software
complexity is necessary. The complexity lies within individual tasks such as the
perception of objects or control theory, but also results from the composition
and connection of components.

DevOps tools and practices combat these difficulties. The methodology en-
forces development practices that ensure stable versioning and continuous deliv-
ery of software. This is typically accomplished using tools such as version control
systems, but also Continuous Integration (CI), where staged builds (typically re-
ferred to as build pipelines) consisting of shell scripts are triggered once code is
updated in order to test, build, and deploy software [1]. A prominent provider for



4 B. Steffen et al.

such services is GitLab4. Within GitLab, the build pipelines have multiple capa-
bilities that exceed simple scripts. It is possible to trigger other pipelines and to
use (software-) artifacts from external pipelines and feedback can be portrayed
through metrics and info texts.

Overall, build pipelines are perfectly suited to improve the quality of code
through automated testing which enables developers to “Commit Daily, Com-
mit Often” to introduce a culture which can greatly improve debugging capabil-
ities [8].

2.2 Image Classification

Image classification is a fundamental problem in computer vision that has been
prevalent for decades, and it has been used throughout history as one of the
key instruments to benchmark the various approaches to artificial intelligence.
There are many techniques that can be used to classify images into meaningful
categories, namely support vector machines, fuzzy sets, genetic algorithms, or
random forests [11,7]. However, with increasing computational power and avail-
ability of recorded data, the current state of the art is deep learning using neural
networks (NNs).

While the state-of-the-art architectures of NNs evolve year by year, the train-
ing process has remained mostly the same. First, the given dataset is split into
training, validation, and test sets. The neural network is trained and improved
using the training set, while the validation set is used for further refinement of
the model and its hyperparameters. Finally, the test set is used to check the
performance of the neural network on unseen data.

During the training process, complex networks are prone to overfitting [16]
generating perfect accuracy in prediction performed on the training data. How-
ever, at the same time, these models lose accuracy on the unseen test data.
Consequently, the goal is to improve the performance of the neural network on
unseen test data, rather than training data.

2.3 JARVIC

In order to understand how and why image classification is used, core princi-
ples of JARVIC, a self-developed software used for autonomous driving, must
be introduced. In essence, perceived sensor data is processed and then used to
generate commands for actuators that control the steering and throttle of the
vehicle. This is done using a software pipeline that is depicted in fig. 2 and is
inspired by the pipeline of AMZ from 2019 [3]. Starting from the top, we have
the Perception component, which takes in Lidar and camera data and processes
these to allow for the detection of object location relative to the vehicle. This
information and additional sensor data in the form of vehicle odometry (acceler-
ation, wheel speed, etc.) is used by the Estimation component, to generate a map

4 GitLab is a DevOps platform that aims to assist software developers with project
management, versioning, etc. See https://about.gitlab.com/company/

https://about.gitlab.com/company/


Continuous Integration of Neural Networks in Autonomous Systems. 5

and localize the car within. The map is processed by the Planning component
calculating a suitable trajectory for the vehicle to follow. Finally, the Controls
component uses the trajectory to derive control commands for the steering and
throttle of the vehicle.

Fig. 2: Abstraction of JARVIC Software architecture.

The neural network described in this paper is found in the Perception com-
ponent. As previously mentioned, the input for this component is Lidar point
clouds and camera images. Both sources are used in a sensor fusion approach
to combine the advantages of both sensors. Lidar is specialized in depth percep-
tion and camera images are great for the detection of objects and colors [14].

Fig. 3: Fusion of Lidar and Camera data5.

The fusion workflow is depicted in fig. 3 and begins by matching the coordinate
systems of both sensors. Once the Lidar detects a point cloud that resembles an
object, the corresponding area in the video feed is cut out and then classified
by color or as a no cone. This classification is done using a fairly simple neural
network designed for image classification. Once the image is classified, the pose
and color of the cones are forwarded to the Estimation component for further
processing.

3 The Neural Network CI-Pipeline

The motivation section hinted at the unique characteristics of the use case re-
garding NN training. The NN of choice is the MobileNetV2 [10] which is fairly

5 The figure is kindly provided by Leon Schwarzer[0000−0002−0882−3912]



6 B. Steffen et al.

small with its 3.4 million adjustable parameters. This neural network is designed
for usage on mobile and embedded devices.
A lightweight neural network was picked for two reasons. First, the task of image
classification on a small (56x60 pixels) image does not require complex approx-
imations. Choosing a more complex architecture such as the DenseNet with 46
million parameters, can perform worse since it has a higher runtime than smaller
NNs [10] and is prone to overfitting due to high variance [6]. Second, the usage
of a GPU was avoided to cut costs and power consumption. Instead, the NN
is executed on an Edge TPU co-processor that is integrated into the hardware
using a Coral PCIe Accelerator 6. While the Coral setup is extremely efficient,
it is also limited in its capacity to run complex neural networks.
An additional unique characteristic of our scenario is the frequently changing
dataset of cone images used for training. The first iteration of the dataset
was an adapted version of the Formula Student Objects in Context (FSOCO)
dataset [13] which emerged through the collaborative efforts of multiple Formula
SAE teams. Hence, the cone images vary in quality and a multitude of cameras
were used for capturing. This is not necessarily bad, as a diverse dataset for
training can lead to great generalization of the NN. However, the raw images
from FSOCO did not exactly portray the characteristics found in real data. In

Fig. 4: Data augmentation of FSOCO dataset to resemble the real data.

an attempt to match the dataset closer to the real data, an augment of the
FSOCO dataset is performed. A depiction of that step can be seen in fig. 4. The
augmentation focuses on imitating the size variance and cone position in cap-
tured images, even adding cropped cones to the augmented dataset. Analyzing,
the average image shows that a cone is further zoomed out and less centered,
compared to the original dataset. Using a CI-pipeline helps explore numerous
configurations quickly, including augmentation setting and the integration of
recorded data (from manual testing sessions) into the training dataset.
To ensure the usage of the best-performing NN, the following four requirements
are used:

1. Train a new NN once the augmentation algorithm is changed
2. Train a new NN once images are added to the training dataset
3. Train a new NN once the training algorithm or NN architecture change

6 Coral offers hardware and software platforms for embedded systems. Our accelerator:
https://coral.ai/products/pcie-accelerator

https://coral.ai/products/pcie-accelerator


Continuous Integration of Neural Networks in Autonomous Systems. 7

4. Validate the performance of any newly trained neural network

Section 3.1 will discuss the solution using CI-Pipelines to automate the train-
ing and validation process of the neural network.

3.1 Design and Implementation

Referring back to fig. 1, we want to improve this paradigm through the use
of MLOps techniques such as CI-pipelines. The goal is to fully automate the
modeling, evaluation, and deployment steps (signified by the red arrows) for the
rapid generation of models. This means that any changes triggered by the Data
Preparation step automatically result in a trained model, an evaluation, and the
deployment of production-ready software. The developer can then analyze the
automatic evaluation, improve their Business or Data Understanding, and start
the cycle again if expectations are not met.

To best explain the approach hands-on the focus will be kept on the workflow
of the scenario when the data augmentation is updated since the other workflows
are part of this case. The design, consisting of a pipeline, is depicted in fig. 5.
The process starts, once a developer changes the augmentation script augment.py
inside the prepare dataset project. The pipeline executes the script, preparing
and augmenting the original FSOCO dataset. To accelerate feedback, a fraction
of the FSOCO dataset is augmented, which serves as a sample.

The output is then combined with a set of self-recorded cone images called
self train, to train the NN with the corresponding train.py script. The resulting
network is validated using the validate.py script with self-recorded data stored
in self val. If the validation shows an improvement to the previous version, the
neural network is updated within JARVIC. As mentioned before, the cases of
retraining of the NN when the dataset changed (meaning self train increased)
or when the training algorithm changed (train.py), are almost identical to the
presented one. In both cases, the untouched pipeline steps can be skipped, re-
sulting in a shortened overall pipeline.
While the design above describes a single pipeline, the reality is a little bit more
nuanced. Separate CI-pipelines are used for the dataset preparation, NN training,
and for validation. These pipelines are then triggered in succession, automati-
cally passing on the respective artifacts to continue validating the model. An
additional detail is that it does not make sense to endlessly increase the amount
of self-shot images for training. While adding data is beneficial, especially data
that is captured using the real sensors, there is a point of diminishing returns
with regard to the resulting NN performance [2]. Hence, the pipeline is used to
test different combinations of datasets with varying sizes and characteristics, to
ultimately find a suitable combination.

For demonstration purposes, we provide an exemplary simplified implemen-
tation of the proposed solution [12].



8 B. Steffen et al.

4 Conclusion

As hinted at throughout the paper, the aim of the presented solution is to save
time and resources through the automation of training and validation of ma-
chine learning models. Using our solution, the pipeline does indeed provide a
production-ready model that can be integrated into the JARVIC software stack.
The CI-pipeline allows the user to assert the viability of NN training setups
with the push of a button. This means that the hurdle to test ideas is almost
diminished, meaning that a broad spectrum of ideas can be put into practice.
Even though manually running the scripts required for training and validation
might not always take a lot of time, it does require human interaction every time
the prior step is finished. In our use case, this sometimes meant the difference
between 48 hours and 8 hours to retrieve a model, even though computation
took the same amount of time.
To further assess the viability of the proposed solution, we regard the perfor-
mance of the cone classifier NN used within JARVIC. The constant testing of
new setups was primarily used to change the pre- and post-processing steps. This
resulted in a significant increase in the performance of the neural network, as de-
picted in section 4. These confusion matrices show the performance of the neural
networks when classifying images of blue, yellow, orange, and large orange cones
and background images. In the beginning, the neural network exhibited only an
accuracy of 18.37% on the self-collected test dataset, with a significant number of
misclassifications, as depicted in the confusion matrix of fig. 6a. However, as seen
in fig. 6b, the classes are now predicted correctly with an accuracy of 91.83%. In

Dataset

FSOCO

augment.py

Neural
Network

self_val

self_train

JARVIC

prepare_dataset

train.py

validate.py

Fig. 5: Overall idea for the design of the continuous NN integration.



Continuous Integration of Neural Networks in Autonomous Systems. 9

(a) Initial performance (b) Final performance

Fig. 6: Confusion matrices of classification NNs. Green cells signify correct and
red cells incorrect classifications.

this case, achieving further improvement is exceedingly challenging, as the test
dataset was manually labeled, and some cases are impossible to classify even by
humans.
While such an improvement of neural networks is not exclusive to cases where
automated training and validation are in place, this mechanism motivated the
developers to try out dozens of varying setups.

5 Future Work

The current architecture of the CI-pipelines already provides validation of the
trained neural network with data that is captured on the same hardware as in-
stalled on the final vehicle. The quality of the NN can therefore be assessed by

prepare_dataset train_NN perception

Fig. 7: Concept for extending the NN validation with the Perception CI-pipeline.

the number of correctly classified cones. However, it is not clear whether NNs
with equally large test errors, perform equally well in an actual racing scenario.
Depending on the algorithms used for the map generation or the boundary es-
timation of the track, different errors could lead to varying results. With a test
error of 50%, one classification NN could be correct for one set of cones (blue
or yellow) and completely wrong for the other, while a second NN could have
the same error distributed over both kinds of cones equally. It is obvious that



10 B. Steffen et al.

depending on the evaluation of the NN, either one of these errors could be better
or worse.

This is why validation of a newly trained NN in the already existing vali-
dation pipeline within JARVIC could result in a more accurate representation
of the NN performance. The concept for this step is depicted in fig. 7. Some
of the validation techniques used in the CI-pipeline for the Perception compo-
nent also include the execution of the Estimation and Planning components.
Hence, deeper implications of the NN performance could be analyzed, and a
final conclusion of the performance of the NN could be drawn.

References

1. Fowler, M., Foemmel, M.: Continuous integration (2006)
2. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT press (2016)
3. Kabzan, J., Valls, M.I., Reijgwart, V.J., Hendrikx, H.F., Ehmke, C., Prajapat, M.,

Bühler, A., Gosala, N., Gupta, M., Sivanesan, R., et al.: Amz driverless: The full
autonomous racing system. Journal of Field Robotics 37(7), 1267–1294 (2020)

4. Karamitsos, I., Albarhami, S., Apostolopoulos, C.: Applying devops practices of
continuous automation for machine learning. Information 11(7), 363 (2020)

5. Kreuzberger, D., Kühl, N., Hirschl, S.: Machine learning operations (mlops):
Overview, definition, and architecture. IEEE Access (2023)

6. Lever, J., Krzywinski, M., Altman, N.: N. model selection and overfitting. Nature
Methods (2016). https://doi.org/https://doi.org/10.1038/nmeth.3968

7. Lu, D., Weng, Q.: A survey of image classification methods and techniques for im-
proving classification performance. International Journal of Remote Sensing 28(5),
823–870 (2007). https://doi.org/10.1080/01431160600746456

8. Meyer, M.: Continuous integration and its tools. IEEE Software 31(3), 14–16
(2014). https://doi.org/10.1109/MS.2014.58

9. Salecker, J.: Whitepaper-tesla-floating-formats (11 2021)
10. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: In-

verted residuals and linear bottlenecks (2019)
11. Stathakis, D., Vasilakos, A.: Comparison of computational intelligence based

classification techniques for remotely sensed optical image classification. IEEE
Transactions on Geoscience and Remote Sensing 44(8), 2305–2318 (2006).
https://doi.org/10.1109/TGRS.2006.872903

12. Steffen, B., Zohren, J., Pazarci, U., Kullmann, F., Weißenfels, H.: Gitlab Demo
Project for Paper ”Continuous Integration of Neural Networks in Autonomous
Systems” (Sep 2023). https://doi.org/10.5281/zenodo.8370907, https://doi.org/
10.5281/zenodo.8370907

13. Vödisch, N., Dodel, D., Schötz, M.: Fsoco: The formula student objects in context
dataset. arXiv preprint arXiv:2012.07139 (2020)

14. Wei, P., Cagle, L., Reza, T., Ball, J., Gafford, J.: Lidar and camera detection fusion
in a real-time industrial multi-sensor collision avoidance system. Electronics 7(6),
84 (May 2018). https://doi.org/10.3390/electronics7060084, http://dx.doi.org/
10.3390/electronics7060084

15. Wirth, R., Hipp, J.: Crisp-dm: Towards a standard process model for data mining.
In: Proceedings of the 4th international conference on the practical applications of
knowledge discovery and data mining. vol. 1, pp. 29–39. Manchester (2000)

16. Ying, X.: An overview of overfitting and its solutions. In: Journal of physics: Con-
ference series. vol. 1168, p. 022022. IOP Publishing (2019)

https://doi.org/https://doi.org/10.1038/nmeth.3968
https://doi.org/10.1080/01431160600746456
https://doi.org/10.1109/MS.2014.58
https://doi.org/10.1109/TGRS.2006.872903
https://doi.org/10.5281/zenodo.8370907
https://doi.org/10.5281/zenodo.8370907
https://doi.org/10.5281/zenodo.8370907
https://doi.org/10.3390/electronics7060084
http://dx.doi.org/10.3390/electronics7060084
http://dx.doi.org/10.3390/electronics7060084

	Continuous Integration of Neural Networks in Autonomous Systems.

