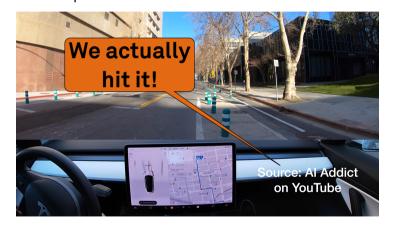
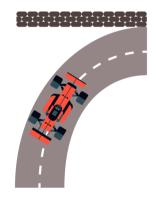


eASy: Resilient Autonomous Systems

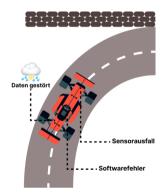

Simon Dierl, Daniel Busch, und Falk Howar

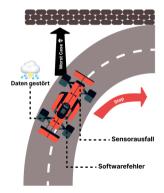
LS5 & LS14, AQUA WG | 21. November 2023

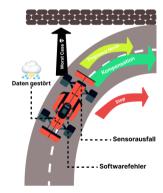
Motivation: Teslas Autopilot



Motivation: Formula Student-Panne







GET racing

Vorstellung GET racing

Vorstellung GET racing

KoKoVa: Validierung durch kontinuierliche Simulation

- Mehrere Level:
 - 1 Simulation
 - 2 Replays
 - 3 Modellfahrzeige
 - großes Auto
- Integration in GitLab
- Tradeoff:
 - schnell & risikoarm
 - realistisch

KoKoVa: Validierung durch kontinuierliche Simulation

- Mehrere Level:
 - 1 Simulation
 - 2 Replays
 - Modellfahrzeige
 - großes Auto
- Integration in GitLab
- Tradeoff:
 - schnell & risikoarm
 - realistisch

Use Case: Formula Student & Jarvic

Formula Student

- Studentischer Konstruktions- und Fahrwettbewerb für Rennautos
- Seit 2017: auch autonom
- Ab 2024: nur elektrisch

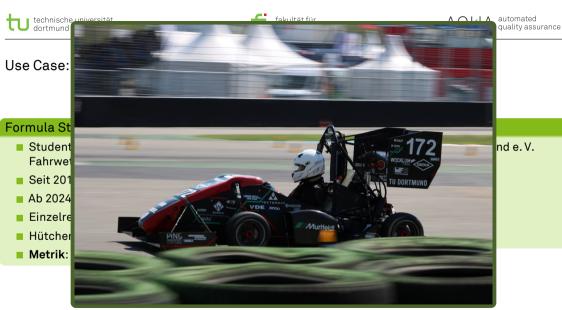
Use Case: Formula Student & Jarvic

Formula Student

- Studentischer Konstruktions- und Fahrwettbewerb für Rennautos
- Seit 2017: auch autonom
- Ab 2024: nur elektrisch
- Einzelrennen auf unbekanntem Kurs
- Hütchen als Bahnbegrenzung
- Metrik: Rundenzeit, Abzüge für Kollisionen

Use Case: Formula Student & Jarvic

Formula Student


- Studentischer Konstruktions- und Fahrwettbewerb für Rennautos
- Seit 2017: auch autonom
- Ab 2024: nur elektrisch
- Einzelrennen auf unbekanntem Kurs
- Hütchen als Bahnbegrenzung
- Metrik: Rundenzeit, Abzüge für Kollisionen

Jarvic

- In Dortmund: GET racing Dortmund e. V.
- Fahrfunktion: Jarvic
- ROS-basiert

Bereits Unterstützung für:

- Simulationen
- Modellautos

Ziel 1: Analyse von Fehlerfällen

Analyse von Fehlerfällen

- Untersuchung vergangener Unfälle
- Analyse Jarvic
- **Ziel:** Dokumentation, Analyse & Kategorisierung

Ziel 2: Unterstützung von Fehlerinjektion

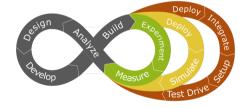
Unterstützung von Fehlerinjektion

- "Erzwingen" von Fehlern
- Umsetzung bspw. durch:
 - Modifikation von ROS-Komponenten
 - Nutzung vorhandener Komponenten
 - Implementierung eigener durch AOP
- Ziel: Schnittstelle für Simulation von Fehlern zur Laufzeit

Ziel 3: Validierung durch Fehlerszenarien

Validierung durch Fehlerszenarien

- Modellierung von Fehlerszenarien
- Dateiformat bspw. YAML
- Metriken für Bewertung der Resilienz
- Ziel: Resilienz als Teil der Continuous Validation



Ziel 4: Implementierung von Resilienz

Implementierung von Resilienz

- Nutzung der aufgebauten Validierungsarchitektur
- Mögliche Umsetzungen:
 - Änderungen an Jarvic
 - Monitoring und Safety Envelopes
 - Hilfskomponenten
- **Ziel:** Zuverlässige Behandlung der Fehlerfälle → Resilienz

Ziele der Projektgruppe

Minimalziel

- Analyse von Fehlerfällen
- Unterstützung von Fehlerinjektion
- Validierung durch Fehlerszenarien
- Implementierung von Resilienz

Ziele der Projektgruppe

Minimalziel

- Analyse von Fehlerfällen
- Unterstützung von Fehlerinjektion
- 3 Validierung durch Fehlerszenarien
- Implementierung von Resilienz

Metaziele

- Teilnahme an FSG24
- Teilnahme am P⁵-Preis
- PG-Schein
 - Seminarphase vor Semesterbeginn
 - Teilnahme während der PG
 - Zwischen- & Endbericht

Lizenzierung

Jarvic

- Internes Projekt des GET racing Dortmund e. V.
- Nicht Open Source
- Wettbewerbsvorteil bei der Formula Student

Lizenzierung

Jarvic

- Internes Projekt des GET racing Dortmund e. V.
- Nicht Open Source
- Wettbewerbsvorteil bei der Formula Student

Eigenentwicklungen

- Kein Veröffentlichungszwang
- Freie Lizenzwahl

Lizenzierung

Jarvic

- Internes Projekt des GET racing Dortmund e. V.
- Nicht Open Source
- Wettbewerbsvorteil bei der Formula Student

Eigenentwicklungen

- Kein Veröffentlichungszwang
- Freie Lizenzwahl

Immer

- Nutzungsrecht durch GET racing Dortmund e. V. für autonomes Fahren
- Nutzungsrecht für Fakultät in Lehre und Forschung

Vor dem 1. April

Anmeldephase

- Bewerbung für die PG
- Teilnehmerauswahl & -zuweisung
- Benachrichtigung & Mailingliste
- 4 1. Treffen

Vor dem 1. April

Anmeldephase

- Bewerbung für die PG
- Teilnehmerauswahl & -zuweisung
- Benachrichtigung & Mailingliste
- 4 1. Treffen

Seminarphase

- Experte in einem Thema werden
- Ausarbeitung (10–12 Seiten)
- Vortrag (30 Minuten)

Außerdem:

- Workshop-Angebot durch GET racing
- Seminarfahrt (geplant)

Was ihr mitnehmt:

- Hands-on-Projekt mit Relevanz
- Erfahrung mit Automotive und Robotik
- Erfahrung mit Resilienz

Was ihr mitnehmt:

- Hands-on-Projekt mit Relevanz
- Erfahrung mit Automotive und Robotik
- Erfahrung mit Resilienz

Was wir bieten:

- Laborraum OH12 / 2.007
- 2 Modellautos
- Bei Bedarf Serverressourcen
- Kaffeevollautomat
- ggf. Teilnahme FSG24

Was ihr mitnehmt:

- Hands-on-Projekt mit Relevanz
- Erfahrung mit Automotive und Robotik
- Erfahrung mit Resilienz

Was wir bieten:

- Laborraum OH12/2.007
- 2 Modellautos
- Bei Bedarf Serverressourcen
- Kaffeevollautomat
- ggf. Teilnahme FSG24

Was wir erwarten:

Muss-Kriterien:

- Grundkenntnisse Linux
- Programmieren

Außerdem:

Hohe Lernbereitschaft

Was ihr mitnehmt:

- Hands-on-Projekt mit Relevanz
- Erfahrung mit Automotive und Robotik
- Erfahrung mit Resilienz

Was wir bieten:

- Laborraum OH12 / 2.007
- 2 Modellautos
- Bei Bedarf Serverressourcen
- Kaffeevollautomat
- ggf. Teilnahme FSG24

Was wir erwarten:

Muss-Kriterien:

- Grundkenntnisse Linux
- Programmieren

Außerdem:

Hohe Lernbereitschaft

Gerne zusätzlich:

- Kenntnisse zu den Technologien
- Erfahrung mit C++, Python
- Vorkenntnisse zu CPS

Bei Fragen: fragen!

simon.dierl@tu-dortmund.de daniel2.busch@tu-dortmund.de